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PREFACE

The purpose of this manual is to provide updated, state-of-the-practice information
for the design and construction of driven pile foundations in accordance with the
Load and Resistance Factor Design (LRFD) platform. Engineers and contractors
have been designing and installing pile foundations for many years. During the past
three decades, the industry has experienced several major improvements including
newer and more accurate methods of predicting and measuring geotechnical
resistance, vast improvements in design software, highly specialized and
sophisticated equipment for pile driving, and improved methods of construction
control. Previous editions of the FHWA Design and Construction of Driven Pile
Foundations manual were published 1985, 1996, and 2006 and chronicle the many
changes in design and construction practice over the past 30 years. This two
volume edition, GEC-12, serves as the FHWA reference document for highway
projects involving driven pile foundations.

Volume I, FHWA-NHI-16-009, covers the foundation selection process, site
characterization, geotechnical design parameters and reporting, selection of pile
type, geotechnical aspects of limit state design, and structural aspects of limits state
design. Volume Il, FHWA-NHI-16-010, addresses static load tests, dynamic testing
and signal matching, rapid load testing, wave equation analysis, dynamic formulas,
contract documents, pile driving equipment, pile accessories, driving criteria, and
construction monitoring. Comprehensive design examples are presented in
publication FHWA-NHI-16-064.

Throughout this manual, numerous references will be made to the names of
software or technology that are proprietary to a specific manufacturer or vendor.
Please note that the FHWA does not endorse or approve commercially available
products, and is very sensitive to the perceptions of endorsement or preferred
approval of commercially available products used in transportation applications. Our
goal with this development is to provide recommended technical guidance for the
safe design and construction of driven pile foundations that reflects the current state
of practice and provides information on advances and innovations in the industry.
To accomplish this, it is necessary to illustrate methods and procedures for design
and construction of driven pile foundations. Where proprietary products are
described in text or figures, it is only for this purpose.



The primary audience for this document is: agency and consulting engineers
specialized in geotechnical and structural design of highway structures; engineering
geologists and consulting engineers providing technical reviews, or who are
engaged in the design, procurement, and construction of driven pile foundations
This document is also intended for management, specification and contracting
specialists, as well as for construction engineers interested in design and contracting
aspects of driven pile systems.

This document draws material from the three earlier FHWA publications in this field;
FHWA-DP-66-1 by Vanikar (1985), FHWA HI 97-013 and FHWA HI 97-014 by
Hannigan et al. (1998), and FHWA NHI-05-042 and FHWA NHI-05-043 by Hannigan
et al. (2006). Photographs without specific acknowledgement in this two volume
document are from these previous editions, their associated training courses, or
from the consulting practice of GRL Engineers, Inc.

The following individuals were part of the Ryan R. Berg & Associates internal peer
review team and are acknowledged for their technical advice and contributions to
this version of the document:

Mr. Jerry DiMaggio — Applied Research Associates, Inc.

Mr. Van E. Komurka — Wagner Komurka Geotechnical Group, Inc.
Mr. Billy Camp — S&ME, Inc.

Dr. Brian Anderson — Auburn University
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LIST OF SYMBOLS

Pile cross sectional area (7.3).

Brown'’s regression analysis factor based on soil type (7.2).
Angular distortion (7.3).

Modified angular distortion (7.3).

Pile toe area (7.1);

Cross sectional area of pile material at pile toe (7.2) (7.10).
Cross sectional area of soil plug in open end pipe or H-piles at pile toe
(7.2); Cross sectional area of pile and soil plug at pile toe (7.10).
Cross sectional area of prestressing steel (8.6).

Pile shaft surface area (7.1) (7.2) (7.10);

Peak seismic ground acceleration coefficient modified by short-period
site factor (7.4).

Pile shaft interior surface area (7.10).

Pile shaft exterior surface area (7.10).

Cross sectional area of steel (8.5). (8.7) (9.5).

Cross sectional area of compression reinforcing steel (8.9).
Cross sectional area of longitudinal reinforcing steel (8.6) (8.7).
Cross sectional area of tension reinforcing steel (8.9).

Area of transverse reinforcement within distance, s (8.9).
Constant based on soil type and subsurface condition (7.2).
Constant based on pile type (7.2).

Acceleration measured at the gage location (10.4).

Width of pile group (7.2) (7.3);

Database calibrated regression factor (7.2).

Pile width or diameter (3.5) (7.1) (8.4);

Width/ Height of square (8.2);

Depth of beam or width of dimension lumber (8.4);

Width of the compression face (8.9).

Column side for square columns (8.9).

Flange width of pile section (8.2) (8.5).

Critical punching shear perimeter (8.9).

Width of interface (8.9).

Perimeter of pier excluding half circles at ends of oblong pier (7.4).
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C - Dimensionless bearing capacity index, determined from average
corrected SPT N value, for layer with consideration of SPT hammer type

(7.3).
Ca - Pile adhesion (7.2) (7.10).
Ce - Compression index (5.2) (7.3).
Cq - Pile perimeter at depth d (7.2);
Deck factor for timber pile structural resistance (8.4).
Ce - Correction factor for Ks when & = ¢ (7.2).
Cr - Size factor for timber pile structural resistance (8.4).
Cs - Conversion factor for cone tip resistance to sleeve friction (7.2).
Cu - Flat-use factor for timber pile structural resistance (8.4).
Ch - Pore water pressure dissipation factor (7.2).
Ci - Incising factor for timber pile structural resistance (8.4).
Cwm - Wet service factor for timber pile structural resistance (8.4).
Cn - Correction factor for SPT N value (5.1).
Cp - Toe correction coefficient for Eslami and Fellenius CPT Method (7.2).
Cr - Recompression index (5.2) (7.3).
Cs - Swell index (5.2);
Shaft correlation coefficient for Eslami and Fellenius CPT Method (7.2).
Csm - Elastic seismic response coefficient (7.4).
Cv - Coefficient of consolidation (5.2) (7.3);
Volume factor for timber pile structural resistance (8.4).
Ca - Secondary compression index (5.2).
Ca - Time effect factor for timber pile structural resistance (8.4).
Ci - Composite column constant 1 (8.7).
C, - Composite column constant 2 (8.7).
Cs - Composite column constant 3 (8.7).
Ca - Damping constant for Statnamic test (11.4).
c - Cohesion (5.2) (7.1);

Distance from centroid to outer edge (8.2);
Distance between the neural axis and the compressive face (8.9).

c’ - Effective cohesion (5.2).

Co - Column diameter (8.9).

C1 - Small column side for rectangular columns (8.9).
C2 - Large column side for rectangular columns (8.9).
D - Pile embedded length (3.5) (7.2) (7.3) (7.10);

Pile penetration below the rock surface (7.2).
Outside pile diameter (8.2);

DA - Design angular distortion (7.3).

DWT - Deadweight tonnage (7.4).
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Pile embedded length into bearing stratum (7.3).

Depth from reference to top of incompressible layer (7.3).
Depth from reference to neutral plane (7.3).

Relative density (5.1) (5.2).

Design differential settlement (7.3).

Effective depth, 2/3 pile embedded length (7.1).

Inside pile diameter (8.2).

Equilibrium depth (7.10).

Clear space (8.9).

Depth to fixity below the ground (8.3); Pile embedment into cap (8.9).
Distance to center of steel (8.9).

Distance from extreme compression fiber to the centroid of the
compression reinforcement (8.9).

Distance from extreme compression fiber to the centroid of the tensile
reinforcement (8.9).

Vane diameter (for Vane Shear Test) (5.2);

Effective depth to reinforcement (8.9).

Web depth of pile section (8.5).

Elastic modulus of material (Youngs modulus) (5.2) (7.3);
Elastic modulus of pile material (7.3) (8.3).

Elastic modulus of concrete (8.2).

Modified elastic modulus of steel for composite column (8.7).
Rock Mass Modulus (5.1).

Rated hammer energy (5.1).

Timber reference value for elastic modulus (8.2).

SPT Hammer efficiency as determined by energy measurements in
accordance with ASTM D4633 (5.1).

Manufacturers rated hammer energy (3.5);

Modulus of Intact Rock (5.1).

Elastic modulus of soil (5.1) (5.2) (7.3) (8.3) .

Secant modulus (7.3).

Elastic modulus of steel (8.5);

Elastic modulus of prestressing steel (8.6).

50% secant modulus (5.4).

Void ratio (7.3).

Initial soil layer void ratio (5.2.4) (7.3).

Vertical force (7.4).

Short period site factor (7.4);

Adjusted timber pile structural flexural resistance (8.4).
Timber reference value for strength in flexure (8.4).
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FCO

fcr
fn

fr
fs
fs

fsc

fsi

fSO

fst

f1

Gs
Ho
Hy

hs
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Adjusted timber pile structural axial resistance (8.4).

Timber reference value for compressive stress parallel to grain (8.2)
(8.4).

Nominal compressive resistance of composite section (8.7).

Plug mobilization factor (7.2).

Zero period site factor (7.4).

Long period site factor (7.4).

Timber reference value for strength in shear (8.4).

Factor for pile driving method (1.0 for impact or 0.68 for vibratory) (7.2).
Yield stress of steel (8.2) (8.5) (8.7) (8.8).

Minimum yield strength of lower strength flange (8.5).

Yield stress of reinforcing steel (8.6) (8.7).

Yield stress of web (8.5).

Consolidation factor (non-dimensional regression factor) (7.2).
Ultimate compression strength for concrete,

Concrete compressive strength at 28 days (8.2) (8.6) (8.7).

Elastic local buckling stress (8.5).

Unit negative shaft resistance (7.3).

Effective prestress in concrete (8.6).

Remolding recovery rate (non-dimensional regression factor) (7.2).
Unit sleeve friction; Average unit sleeve friction (5.1) (7.2).

Unit shaft resistance over the pile surface area (7.1) (7.2);

Unit positive shaft resistance (7.3).

Stress in the mild steel compression reinforcement at nominal flexural
resistance (8.9).

Interior unit shaft resistance (7.10).

Exterior unit shaft resistance (7.10).

Stress in the mild steel tension reinforcement at nominal flexural
resistance (8.9).

Correction factor for undrained shear strength determination (5.2).
Shear modulus (5.2) (8.5).

Specific Gravity (5.2).

Initial soil layer thickness (5.2) (7.3).

Maximum vertical drainage path in cohesive layer (7.3).

Total Thickness of sublayers (7.3);

Distance between flange and centroid for warping torsional constant
(8.5); Structural depth, thickness of cap less pile embedment (8.9).
Height of embankment fill (7.3).

Thickness of soil strata (5.2).

Vane height (for Vane Shear Test) (5.2).
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hw - Height of water (pressure head) for calculation of pore water pressure
(5.2).
- Moment of inertia (8.2);
Weak axis moment of inertia (8.3).

It - Influence factor for group embedment (7.3).

Ix - Moment of inertia about the major principal axes of cross section (8.5).

ly - Moment of inertia about the minor principal axes of cross section (8.5).

] - Stress exponent (7.3).

K - Effective length factor for buckling (7.2) (8.2) (8.5) (8.7).

Ko - At rest earth pressure coefficient (5.2) (7.2).

Ks - Ratio of unit pile shaft resistance to cone unit sleeve friction for
cohesionless soils (7.2).

Ks - Coefficient of lateral earth pressure (7.2).

Ke - Modulus of subgrade reaction for cyclic lateral loading (7.3).

Ks - Modulus of subgrade reaction for static lateral loading (7.3).

kq - Regression factor (0.17 for PSC, 0.12 for CEP and 0.15 for OEP) (7.2).

ko - Regression factor (0.00044 for PSC piles, 0.00078 for CEP, and 0.00060

for OEP) (7.2).

L - Total pile length (7.3).

L% - Pile length subject to heave (7.10).

Le - Effective pile length considering unbraced length (8.4).

Lo - Embedded pile length at the time of initial driving (7.2).

Ls - Span length (7.3).

L - embedded pile length at time “t” after initial driving (7.2).

I - Unbraced length, or laterally unsupported length plus dr (8.3) (8.5) (8.7).

Mp - Bending moment (7.3).

Mn - Nominal flexural resistance (structural) (8.4) (8.5) (8.6).

Mp - Plastic moment about the weak axis (8.5).

M; - Factored flexural resistance (structural) (8.3) (8.5) (8.6).

M - Factored flexural resistance about x-axis (8.5) (8.6).

My - Factored flexural resistance about y-axis (8.5) (8.6).

My - Factored moment load (structural) (2.3) (8.3).

Mux - Factored moment about x-axis (8.5) (8.6) (8.8).

My - Factored moment about y-axis (8.5) (8.6) (8.8).

mn - Dimensionless modulus number (7.3).

Mpr - Dimensionless recompression modulus number (7.3).

ms - Semilog-linear slope of Rs vs tfrom multiple restrike tests (7.2).

N - Uncorrected field SPT resistance value (5.1) (5.2) (5.4) (5.5) (7.2) (7.3)
(7.4).

Na - Average SPT N-Value over pile length (7.2).
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N - Dimensionless bearing capacity factor (7.2).

Nk - Bearing capacity factor, typically from 15 to 20 (5.2).

Nq - Dimensionless bearing capacity factor (APl Method) (7.2).

Ngq - Dimensionless bearing capacity factor (7.2).

Nt - Toe resistance coefficient (7.2).

Neo - SPT N value corrected for 60% energy transfer (5.1.1) (7.2) (7.3).

(N1)eo - SPT N value corrected for energy and overburden stress (5.1) (5.2) (7.2)
(7.4) (7.10);
Average corrected SPT N value within a depth B below pile toe (7.3).

(N1)60e- Equivalent clean sand blow count (7.4).

Neor - SPT N value corrected for percent fines (7.4.).

N, - Bearing capacity factor (7.2).

n - Exponent typically equal to 1 in clays (e.g., Olsen 1997) and 0.5 in sandy

soils (e.g. Lio and Whitman 1986) (5.1);
Number of piles in pile group (7.2) (7.3) (8.8).

Nh - Rate of increase of soil modulus with depth (8.3).

N - Number of piles whose centers lie inside the two-way shear critical
section (8.9).

No - Number of piles whose centers lie outside the two-way shear critical
section (8.9).

Pe - Elastic critical buckling resistance (8.5).

Pe(X) - Equivalent static horizontal seismic force acting on superstructure (7.4).

PGA - Peak ground acceleration coefficient (7.4).

Pm - P-multiplier for p-y curve (7.3).

Pn - Nominal axial resistance (structural) (8.4.2) (8.5) (8.6) (8.7).

Po - Equivalent nominal axial yield resistance (structural) (8.5) (8.6).

Pr - Factored axial resistance (structural) (3.4.1) (8.3) (8.5) (8.6) (8.7).

Px - Factored axial resistance determined on the basis that only eccentricity,
ey, Is present (8.6).

Py - Factored axial resistance in biaxial flexure (8.6).

Py - Factored axial resistance determined on the basis that only eccentricity,
ex, is present (8.6).

Ps - Pile shape factor (7.2);

Ps - Equivalent static vessel impact force (7.4).

Pt - Pile base factor (7.2).

Pu - Factored axial load (structural) (8.3.3) (8.6) (8.8) (8.9).

Pui - Maximum single pile axial load (8.8).

Pu - Factored axial load from superstructure/substructure acting upon pile
cap (8.8).

p - Soil resistance per unit pile length (7.3).
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Rng
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Rs
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Atmospheric pressure (5.1) (5.2).

Design foundation pressure (7.3.4).

Total factored load (2.3); Factored axial load (7.3) (7.6);
Slender element reduction factor (8.5).

Scour Design Check Flood Frequency (7.2).

Hydraulic design flood frequency (7.2);

Unfactored permanent load (7.3).

Maximum axial compressive force in the pile (7.3).

Live load on a pile (7.3).

Force effect (2.3) (7.3) (7.4).

Lateral pile load (7.3).

Scour Design Flood Frequency (7.2).

Surcharge (7.3).

Cone tip resistance (5.1) (5.2) (7.2).

Average cone tip resistance within a depth of B below the pile toe (7.3).
Average (. over a distance of x, below the pile toe (7.2).
Average (c over a distance of 8b above the pile toe (7.2).
Dilatometer test tip resistance (5.5).

Eslami cone stress (7.2).

Geometric average of the corrected cone tip resistance over the
influence zone (7.2).

Limiting unit toe resistance (7.2).

Unit toe resistance (7.1) (7.2) (7.1).

Corrected cone tip resistance (5.1) (7.2).

Unconfined compressive strength (5.1) (5.2) (5.3) (5.5) (7.2).
Radius of pier (7.4).

Friction ratio or fs/q: (5.1).

Nominal resistance (2.4) (3.4) (7.1) (7.2) (7.3) (7.6) (7.10).
Nominal resistance of each individual pile in the group (7.2).
Nominal driving resistance (3.4) (7.6).

Nominal resistance of pile group (7.2).

Initial nominal resistance at time “to” of driving (7.2).
Nominal toe resistance (7.1) (7.2) (7.3).

Factored resistance (2.4) (7.2) (8.8) (8.9).

Resistance loss from relaxation (7.6).

Factored resistance of the pile group (7.3).

Nominal shaft resistance (3.4) (7.1) (7.2) (7.3) (12.7).
Resistance loss from scour (7.6).

Initial shaft resistance at “to” of driving (7.2).

Positive Shaft Resistance (7.3).
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Savg
Sy
Sdd
Sc
Sbs
Sp1
Sh
SmaX

Tm
To
Ts
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Negative Shaft Resistance (7.3).

Nominal uplift resistance of the pile group (7.2).

Equivalent pile radius (7.2).

Minimum radius of gyration (8.3);

Radius of gyration about axis normal to plane of buckling (8.5) (8.7).

Settlement (7.1); Estimated total settlement (7.3);

Elastic section modulus (8.2) (8.4).

Average settlement (3.5).

Differential settlement of the foundation (7.3).

downdrag movement (7.3).

Settlement from primary consolidation (5.2) (7.3).

Csm value with a period of 0.2 seconds = FaSs (7.4).

Csm value with a period of 0.2 seconds = F\.S1 (7.4).

Horizontal abutment movement (7.3).

Maximum settlement (3.5).

Pile slope (7.3).

Short period spectral acceleration (7.4).

Sensitivity of a cohesive soil (5.2).

Total foundation settlement (7.3).

Total foundation settlement before construction (7.3).

Relevant total settlement (7.3).

Vertical fill settlement (7.3).

Elastic section modulus about weak axis (8.5).

Long period coefficient (7.4).

Spacing of the transverse reinforcement (8.9).

Residual shear strength (7.4).

Undrained shear strength (3.4) (5.1) (5.2) (5.5) (7.2) (7.4) (8.3);

Vane Shear Test undrained shear strength (5.5);

Average undrained shear strength (7.3);

Undrained shear strength of soft cohesive soil (7.3) (7.10).

Theoretical time factor for percentage of primary consolidation (7.3).
Period of vibration of m" mode(s) (7.4).

Reference period to define spectral shape = 0.2Ts (7.4).
Corner period when spectrum changes from independent to inversely
proportional = Sp1 /Sps. (7.4).

Input torque during shear (for Vane Shear Test) (5.2).

Time after driving (7.2);

Time for settlement to occur (7.3);

Pipe pile wall thickness (8.2) (8.5).

Thickness of pile cap (8.9).
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Flange thickness of pile section (8.2) (8.5).
Ice thickness (7.4).
Time after driving from which the increase in resistance is linear in
logarithmic time (days) (typically 0.5 for sand, 1.0 for clay) (7.2).
Thickness of compressible soil beneath neutral plane (7.3).
Web thickness of pile section (8.2) (8.5).
Displacement (7.3).
Pore water pressure (5.1) (5.2) (7.1).
Excess pore water pressure (7.2).
Hydrostatic pore water pressure (7.2).
Volume of soil displaced per unit length of pile (7.2);
Vessel impact velocity (7.4).
Nominal shear resistance provided by concrete tensile strength (8.9).
Nominal shear resistance (8.9).
Factored shear resistance (structural) (8.3).
Shear wave velocity (7.4);
Nominal shear resistance provided by steel reinforcement (8.9).
Factored shear load (structural) (2.3) (8.3) (8.9).
Pier or Abutment Width (4.2);
Equivalent weight of the superstructure (7.4).
Estimated weight of pile cap (8.8).
Effective weight of the pile/soil block including pile cap weight (7.2).
Weight of soil plug (7.10).
Estimated weight of soil above pile cap (8.8).
Moisture Content (5.1) (5.2) (7.2) (7.4).
Distance along x-axis from the center of the column to each pile
center (8.8).
Pile head deflection (7.3).
Lateral soil (or pile) deflection (7.3);
Distance along y-axis from the center of the column to each pile center
(8.8).
Length of pile group (7.2) (7.3).
Plastic section modulus about weak axis (8.5).
Compression factor for settlement (3.4) (3.5);
Dimensionless adhesion factor (7.2).
Ratio of pile unit shaft resistance to cone unit sleeve friction for cohesive
soils (7.2).
Dimensionless factor in Nordlund method (7.2).
Bjerrum-Burland beta coefficient (7.2).
Ratio of the long side to the short side of the load (8.9).
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Bm - Mobilized angle for strain wedge analysis (7.3).

B - Stress block factor (8.9).

A - Elastic compression (7.3).

Ad - Length of pile segment (7.2).

AH - Total settlement at Pier or Abutment (7.3).

AHio0 - Differential settlement over 100 Feet within a pier or abutment, or the
differential settlement between piers (7.3).

Aum - Maximum excess pore pressure (7.2).

Ao - Additional stress at mid-point of soil layer from loading (5.2);
Additional pressure from structural loading (7.3).

Aon - Changes in deviator stress in the direction of loading (7.3).

Ae - Strain from the increase in effective stress (7.3);

o - Friction angle between pile and soil (7.2) (7.3);

£ - Strain (5.2) (7.3).

Ecu - Failure strain of concrete in compression (8.6).

Ev - Vertical strain (5.2).

€50 - Strain at one half the maximum principal stress (7.3) (7.4).

Ng - Pile group efficiency (7.2).

ni - Load modifier based on ductility, redundancy, or operation classification
(2.3) (2.4).

- Total unit weight of soil (5.1) (5.2) (5.5).
- Buoyant unit weight of soil (5.5).

Yd - Dead Load Factor (7.3).

4G - Unit weight of embankment fill (7.3).

Yi - Load factor, statistically based multiplier applied to force effect (2.3) (2.4)
(7.4) (7.3);
Unit weight of soil strata for calculation of in-situ stress (5.2).

M - Load factor for force effect due to live loads (7.3).

Yp - Load factor for force effect due to permanent loads (2.3) (7.3) (7.4).

YSE - Load factor for force effect due to vertical settlement (7.3).

Y6 - Load factor for force effect due to temperature gradient (2.3).

Yw - Unit weight of water (5.2).

A - Normalized column slenderness factor (8.7).

A - Slenderness ratio for flange (8.5).

Aot - Limiting slenderness ratio for a compact flange (8.5).

Nt - Limiting slenderness ratio for a non-compact flange (8.5).

v - Poisson ratio (5.2) (5.4).

o - Normal stress (pressure) on plane of failure, stress (5.2).

o’ - Effective normal stress (pressure) on plane of failure (o - u) (5.2).
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Po1
¢da

¢dyn

ol
Pm
Ostat
Pug

Pup
Py

Vertical effective stress at the center of depth increment d (7.2).
Driving stress (8.4) (8.5) (8.6).

Horizontal effective stress at the sample depth (5.2).

Effective stress prior to stress increase (7.3).

Preconsolidation pressure or stress (5.1) (5.2) (7.3).

Vertical effective stress at the pile toe (7.2).

Reference stress for settlement with Janbu Tangent Modulus (7.3).
Total stress (7.1).

Vertical effective stress (7.1).

Initial vertical effective stress prior to pile driving (7.2).

Vertical effective stress at the sample depth (5.1.1) (5.2) (7.2);

Vertical effective stress at midpoint of each layer (prior to stress
increase) (7.3).

Effective stress after stress increase (7.3).

Shear stress at failure (shear strength) (5.2); Shear strength of soil (7.1).
Resistance factor, statistically based multiplier on nominal resistance
(2.4); Angle of internal friction (2.4) (5.1) (5.2) (5.5) (7.1) (7.2) (7.3).
Effective Stress Friction Angle (5.1) (5.5) (7.2.) (7.10).

Resistance factor (pile structural resistance in compression) (8.3) (8.5)
(8.6).

Block Failure (7.1).

Resistance factor (pile structural resistance during driving) (8.3) (8.4)
(8.5) (8.6).

Resistance factor (based on the construction control method) (2.10) (3.4)
(7.1) (7.2) (7.6).

Resistance factor (pile structural resistance in flexure) (8.3) (8.5) (8.6).
Mobilized angle of internal friction (7.3).

Resistance factor (based on the static analysis method) (7.1) (7.2).
Resistance factor for group uplift (based on the uplift analysis method)
(7.1) (7.2).

Resistance factor (based on the uplift analysis method) (3.4) (7.1) (7.2).
Resistance factor (pile structural resistance in shear) (8.3).

Ratio of undrained shear strength divided by effective overburden
pressure,s, /a',, (7.2).

Angle of pile taper from vertical (7.2).

Correction factor (5.2).
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LIST OF ACRONYMS

AASHTO - American Association of State Highway and Transportation Officials
ASTM - American Society for Testing and Materials
BL - Blast load

BOR - Beginning of Restrike

BR - Vehicular braking force

CD - Consolidated Drained triaxial test

CE - Vehicular centrifugal force

CED - Closed End Diesel hammer

CEP - Closed End Pipe

CFA - Continuous Flight Auger
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CPT - Cone Penetration Test

CPTu - Piezo Cone Penetration Test

CR - Force effects due to creep

CT - Vehicular collision force
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CVv - Vessel collision force

DA - Design Angular Distortion

DC - Dead load components and attachments
DD - Downdrag

DF - Drag force

DLT - Dynamic Load Test

DMT - Dilatometer test

DW - Wearing surface and utilities

DWT - Deadweight tonnage

EH - Horizontal earth pressure

EL - Locked-in stress

EOD - End of Drive

EQ - Earthquake load

ER - SPT hammer efficiency as determined by energy measurements
ES - Earth surcharge

EV - Vertical earth pressure

FHWA - Federal Highway Administration

FR - Friction load

1.D. - Inner diameter
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Force effect due to temperature gradient
Force effect due to uniform temperature
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Vane shear test
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Downward traveling wave, Wave Down
Wave Equation

Wave Equation Analysis Program
Wind on live load

Wind load on structure
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CHAPTER 1
DRIVEN PILE FOUNDATION MANUAL

1.1 INTRODUCTION

In 1985 the Federal Highway Administration (FHWA) published the first edition of
this manual. Subsequent editions were published in 1997 and 2006. Since the last
published update, significant changes in pile design, construction, and performance
requirements have occurred which make it necessary to once again update the
manual. This 2015 update is primarily dictated by the need to revise and update
manual content in accordance with the Load and Resistance Factor Design (LRFD)
methodology which replaced the Allowable Strength Design (ASD) method for the
design of transportation substructures in 2007. Other significant changes in practice
addressed by this edition of the manual include:

. emphasis on a rational economic evaluation of the foundation design,

o use of higher strength pile materials and/or larger driven pile sections to
support greater foundation loads,

o updates in computer programs for pile foundation analysis and design,

. use and quantification of soil setup in pile design and construction,

o improvements in pile installation equipment and equipment performance
monitoring,

. increased use of instrumented static load test programs, and

o improvements in QA/QC methods for nominal resistance and pile
integrity verifications.

1.2 PURPOSE OF THE MANUAL

The purposes of the previous driven pile foundation manual editions remain largely
unchanged. Itis worthwhile to restate the purpose and objectives of the manual.

1. There exists a vast quantity of information on driven pile foundations which
presently is not compiled in a form which is useful to most practicing
engineers. There are proven rational design procedures, information on
construction materials, equipment and techniques, and useful case histories.
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Unfortunately, much of this information is fragmented and scattered.
Standard textbooks and other publications on the subject tend to be
theoretically oriented and practicing design and construction engineers often
find them lacking in practical aspects. One of the primary goals of this
manual is to meet that need for the practicing engineer.

Many historical design methods lead to unnecessarily conservative designs
because they were based solely on experience and tradition with little
theoretical background. Well established rational design procedures and
techniques are summarized herein that provide more economical driven pile
foundation systems that can safely support the applied structural loads.

. There are opportunities for substantial cost savings on driven pile foundation
projects through the use of improved methods of design and construction
technology. A minimum of fifteen percent of the substructure cost can be
easily saved by utilizing such methods and, in most cases, the savings are
more significant.

. Since the adoption of LRFD methodology for all transportation projects, a
comprehensive driven pile foundation manual has been needed. This manual
is intended to fulfill that need as well as to establish minimum design
standards and recommendations.

Design criteria for bridges and other structures are becoming more complex
and sophisticated. Extreme design events such as scour, debris loading,
vessel impact, and seismic events require that foundation performance be
evaluated under lateral and uplift loading, group behavior, and substructure -
superstructure interaction. In addition, deformation performance
requirements (lateral and vertical deflections) are routinely included in project
requirements. This new series of performance criteria frequently results in
foundations which are more costly, more complex to design, and more difficult
to construct.

. The loading conditions noted above have can have a substantial impact on
the structural design of the piles. Inthe past, driven piles were often
designed structurally for axial loads only using an allowable stress approach.
The allowable stresses had been established primarily to assure pile
drivability. However, the requirement that piles be analyzed for combined
horizontal and axial loads requires a change in the evaluation procedure. The
pile top is subjected to both horizontal and axial loads and in a pile group the
2



pile resistance to lateral loads varies with each pile row. Of course this
complicates the geotechnical analysis. It also complicates the pile structural
analysis. A combined bending and axial load analysis of the structural
behavior of the pile must be performed. Particularly for concrete piles this
analysis must be based on an ultimate strength analysis and it is not always
obvious which pile within a group is the critical one. Comprehensive software
is now available to perform the necessary analyses and is discussed herein.

7. Alternative contracting methods (ACM), design-build (D-B) and CM/GC
(construction manager/general contractor), are increasingly replacing the
conventional design-bid-build (DBB) method as the preferred methods of
project development and delivery. Among the changes which these ACM’s
affectis an intentional, but yet aggressive challenge to existing design
specifications.

8. Final pile design selection should involve a cost evaluation. In the past, such
evaluations have been implied but they were not a routine part of the design
process. Methods have been developed to perform cost evaluations of pile
foundations that include the effects of soil setup. These concepts will be
presented in this edition of the manual.

9. A larger selection of pile hammer types and sizes, improvements in hammer
performance, advancements in equipment controllability and installation aids
allow efficient pile installation in most subsurface conditions.

1.3 SCOPE OF MANUAL

The manual is limited to driven piles and consists of eighteen chapters and four
appendices. The first half of the manual covers the design aspects of pile
foundations including cost evaluations, geotechnical data collection and analysis,
selection of pile type, as well as geotechnical and structural aspects of limit state
design. The second half of the manual covers methods of nominal resistance
verification as well as chapters on pile driving equipment, accessories and
inspection procedures. Theoretical discussions have been included only where
necessary. Specific recommendations are made where appropriate. Example
problems are included to provide hands-on knowledge to manual users.

The manual is a standalone document that provides guidance for engineers on the
design and construction of driven pile foundations. A separate training course will

3



be used to transfer knowledge in this area and will continue with the original goal of
updating transportation department practice. Also, new engineers continue to join
transportation agencies and require expanding their knowledge in the practical
aspects of pile design and installation.

1.4 HISTORY OF DRIVEN PILE FOUNDATIONS

The detailed history of driven pile foundations has been lost to time. It has been
postulated that some of the earliest use of driven timber piles dates back to 800 BC
where the piles were installed with mauls or drop hammers. Reinforced concrete
piles debuted in Europe in 1897 and in Chicago in 1901. Structural steel piles
including, pipe, I-beams, and H-piles followed not too long thereafter. Octagonal
and square, precast, prestressed concrete piles as well as 36 inch and 54 inch
diameter post-tensioned concrete cylinder piles developed in the 1950’s.

As noted above, the first pile hammers were simple drop hammers. The first
modern pile driving hammer was a Scottish steam hammer patented by Naysmith in
1839. Inthe U.S., steam pile driving hammers were reported between the mid- to
late 1800’s. In the mid 1920’s, the diesel pile hammer was invented in Germany.
Vibratory hammers were invented in the Soviet Union in the 1940’s and made their
way into the U.S. market in the 1960’s. The first hydraulic pile hammers were
developed in Scandinavia in the 1960’s. In the 1960’s, Bodine developed a resonant
pile hammer but the hammer had limited use in the market due to mechanical
reliability issues. The resonant pile driver re-emerged in the 2000’s. Many
improvements in hammer features and operation have occurred over the years for
all hammer types. Rausche (2000) summarized the development of pile driving
equipment along with equipment capabilities and properties.

1.5 INFORMATION SOURCES

The information presented in this manual has been collected from several sources.
The primary references are the 7th Edition of the AASHTO LRFD Bridge Design
Specifications (2014) with 2015 Interim Revisions and the 3rd Edition of the
AASHTO LRFD Bridge Construction Specifications with 2010, 2011, 2012, and 2014
Interim Revisions. Additional sources of information include: "Evaluation of Soil and
Rock Properties," GEC-5 by Sabatini et al. (2002), “Implementation of AASHTO
LRFD Design Specifications for Driven Piles” by Abu-Hejleh et al. (2013), “Drilled
Shafts: Construction Procedures and LRFD Design Methods” GEC-10 by Brown et
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al. (2010), “LRFD Seismic Analysis and Design of Transportation Geotechnical
Features and Structural Foundations” GEC-3 by Kavazanjian et al. (2011) as well as
“Evaluating Scour at Bridges, Fifth Edition” HEC-18 by Arneson et al. (2012).

The information within has been condensed, modified and updated as needed. The
sources also include state-of-the-art technical publications, manufacturers' literature,
existing Federal Highway Administration (FHWA), National Highway Institute (NHI)
and Transportation Research Board (TRB) publications, standard textbooks, and
information provided by State and Federal transportation engineers. Reference lists
are provided at the end of each chapter.

Many of the documents used in the development or updating of this manual, as well
as useful industry links are available at
https://www.fhwa.dot.gov/engineering/geotech/.



https://www.fhwa.dot.gov/engineering/geotech/
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CHAPTER 2

OVERVIEW OF PILE FOUNDATION DESIGN & CONSTRUCTION

2.1 INTRODUCTION

As stated by Professor R. B. Peck, “driving piles for a foundation is a crude and
brutal process.” The interactions among the piles and the surrounding soil are
complex. Insertion of piles alters the character of the soil and intense strains are set
up locally near the piles. The non-homogeneity of soils, along with the effects of the
pile group and pile shape, adds further difficulties to the understanding of soil-pile
interaction. For piles driven to hard rock or into soft rock, the strength and structure
of the rock mass including joints, bedding planes, and the degree of weathering
complicate our understanding of rock-pile interaction.

Broad generalizations about pile behavior are unrealistic. An understanding of the
significance of several factors involved is required to be successful in the design of
pile foundations. Because of the inherent complexities of pile behavior, it is
necessary to use practical semi-empirical methods of design, and to focus attention
on significant factors rather than minor or peripheral details.

To arrive at the optimum driven pile foundation solution, the foundation engineer
must have a thorough understanding of the subsurface conditions including soil/rock
parameters and behavior, the applicable limit states, the factored loads and load
combinations, project performance requirements, foundation costs, and the current
foundation design and construction practices where the foundation is located.

2.2 LIMIT STATES

Four limit states are identified in the AASHTO LRFD Bridge Design Specifications
(AASHTO 2014): strength, service, extreme event, and fatigue. In addition, these
limit states have several load combination cases such that up to thirteen limit states
may require evaluation in a bridge design. There are five strength limit cases, two
extreme event limit cases, four service limit cases, and two fatigue limit cases as
described in Table 2-1.



Limit states that commonly govern driven pile foundation designs include: Strength I,
Strength 1V, Extreme Event | (earthquake), Extreme Event Il (ice, vessel, blast, and
vehicle collision), and Service I. All applicable limit states have equal importance in
a driven pile foundation design. Service Limit States Il, Ill, and IV and Fatigue Limit
States | and Il are relevant to the behavior of superstructure elements and are not
generally applicable to foundation design.

Table 2-1  Limit State, Load Case, and Load Combination (after AASHTO 2014)

Limit State and

Load Combination

Load Case
Strength | \I?w%s(;c load combination related to normal vehicular use of the bridge without
St Load combination relating to use of the bridge by owner-specified special
rength I ) : . ; . .
vehicles, evaluation permit vehicles, or both, without wind.
Load combination for bridge exposed to wind velocity exceeding 55 mph without
Strength Il :
live loads.
Strenath 1V Load combination for very high dead load to live load force effect ratios.
9 (Typical for bridge spans greater than 250 feet).
Strength V Load combination for normal vehicular use of the bridge with wind velocity of 55

mph.

Extreme Event |

Load combinations including earthquake.

Extreme Event Il

Load combinations relating to ice load, collision by vessels and vehicles, and
certain hydraulic events with a reduced live load other than that which is part of
the vehicular collision load.

Load combinations relating to normal operational use of the bridge with a 55

Service | mph wind and all loads taken at their nominal values.
. Load combinations intended to control yielding of steel structures and slip of
Service Il ; . . : :
slip-critical connections due to vehicular live load.
Load combinations relating to tension in prestressed concrete superstructures
Service llI with the objective of crack control and to principal tension in the webs of
segmental concrete girders.
. Load combinations intended to control tension in prestressed concrete columns
Service IV ; Lo
with the objective of crack control.
Fatigue | Fatigue and fracture load combination related to infinite load-induced fatigue life.
Fatigue Il Fatigue and fracture load combination related to finite load-induced fatigue life.




2.3 LOADS, LOAD COMBINATIONS, AND LOAD FACTORS

The total factored load, Q, associated with a given limit state is calculated based on
the applicable force effect, load modifiers, and load factors.

Q:ZUiViQi Eqg. 2-1
Where:
ni = load modifier based on ductility, redundancy, or operation
classification.
vi = load factor, a statistically based multiplier applied to force effect.
Qi = force effect.

A specific load combination applies for each limit state case. A general description
of the applicable load, load combinations and load factors associated with each limit
state is presented in Table 2-2. The two letter codes in the second column in Table
2-2 correspond to permanent loads and the remaining two letter code descriptions
correspond to transient loads.

For example, the total factored load, Q, for Strength Limit State | is defined as
follows:

Q= 71pDC +ypDD +ypDW +pEH + ypEV + ypES + 1p EL + 1pPS + 1p CR +
vpSH + 1.75LL + 1.75IM + 1.75CE +1.75BR + 1.75PL +1.75LS + WA +
FR + 1.20TU + y1c TG + yse SE

The load factor for permanent loads, yp, has maximum and minimum values as
prescribed in Table 2-3. For permanent force effects, the load factor that produces
the more critical load combination is selected from Table 2-3.



Table 2-2

Load Combinations and Load Factors (after AASHTO 2014)

DC
DD
DW
EH | |
EV [ M
ES
CE
EL
ps | BR
Load Combination CR PL
Limit State oy | LS | WA | ws | wL | FR U TG | SE | EQ* | BL* | Icx | CcT* | cv*
Strength | % | 175 | 1.00 -- | 1.00 | 0.50/1.20 | yig | e
Strength Il % | 1.35 | 1.00 -- | .00 | 0.50/1.20 | yie | e
Strength Il yp 1.00 | 140 | --- | 1.00 | 0.50/1.20 | yro | 7yee
Strength IV yp 1.00 - | 100 | 100 | 0.50/1.20 | ~°
Strength V % | 1.35 | 1.00 | 0.40 1.00 | 0.50/1.20 | yro | 7yee
Extreme -
vont 1 % | 7eo | 1.00 - | 100 1.00
Extreme v | 050 | 1.00 -- | 1.00 1.00 | 1.00 | 1.00 | 1.00
Event Il P
Senice | 1.00 | 1.00 | 1.00 | 0.30 | 1.00 | 1.00 | 1.00/1.20 | yro | 7yee
Senice I 1.00 | 1.30 | 1.00 -~ | 100 | 100120 | T
Senice i 1.00 | 0.80 | 1.00 -- | .00 | 1.00/1.20 | yie | e
Senice IV 1.00 1.00 | 0.70 - | 100 | 1.00/120 | ~7 | 1.00
Fatigue | -** L
LL, IM & CE 1.50
Fatigue Il -** L L
LL, IM & CE 0.75

* - Use one of these at a time
** - Load factors only applied to LL, IM and CE

The two letter load descriptions correspond to permanent and transient loads as

follows:

DC - dead load components and attachments

DD - downdrag

DW — wearing surface and utilities

EH — horizontal earth pressure

EV — vertical earth pressure
ES - earth surcharge

EL — locked-in stress

PS — secondary forces from post-tensioning

CR - force effects due to creep

SH - force effects due to shrinkage
LL — vehicular live load
IM — vehicular dynamic load allowance

CE - vehicular centrifugal force

BR —vehicular braking force

PL — pedestrian live load
LS - live load surcharge
WA — water load and steam pressure

WS —wind load on structure

WL —wind on live load

FR — friction load

TU — force effect due to uniform temp.
TG — force effect due to temp. gradient

SE - force effect due to settlement

EQ - earthquake load

BL — blast load
IC —ice load

CT - vehicular collision force
CV - vessel collision force
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Table 2-3  Load Factors for Permanent Loads (after AASHTO 2014)

Max. Min.
Type of Lo o | hona
Yp Yp

DC: Components and Attachments 1.25 0.90
DC: Strength 1V only 1.50 0.90
DD: Downdrag (Tomlinson o-Method) 1.40 0.25
DD: Downdrag: (A Method) 1.05 0.30
DW: Wearing Surface and Utilities 1.50 0.90
EH: Horizontal Earth Pressure (Active) 1.50 0.90
EH: Horizontal Earth Pressure (At-rest) 1.35 0.90
EH: Horizontal Earth Pressure (AEP for anchored walls) 1.35 N/A
EL: Locked-in Construction Stresses 1.00 1.00
EV: Vertical Earth Pressure (overall stability) 1.00 N/A
EV: Vertical Earth Pressure (retaining walls and abutments) 1.35 1.00
EV: Vertical Earth Pressure (rigid buried structures) 1.30 0.90
EV: Vertical Earth Pressure (rigid frames) 1.35 0.90
EV: Vertical Earth Pressure (flexible buried str. - metal box, plate, fiberglass) 1.50 0.90
EV: Vertical Earth Pressure (flexible buried str. - thermoplastic) 1.30 0.90
EV: Vertical Earth Pressure (flexible buried str. - all others) 1.95 0.90
ES: Earth Surcharge 1.50 0.75

Brown et al. (2010) summarized the basic limit state design process for a bridge or
other structure. For each limit state, the structural engineer determines the
foundation force effects using a preliminary structural model of the proposed
structure. This structural model is developed and analyzed under the limit state load
combinations described in Table 2-2. Factored loads are used in the analyses.

Figure 2-1 illustrates the reactions at a column-cap joint computed by the structural
analysis. These are the force effects transmitted to the deep foundation supported
cap. For driven pile designs, these reactions are resolved into vertical, horizontal,
and moment components, and are taken as the factored values of axial, lateral, and
moment force effects, respectively at the top of the pile cap. Multiple iterations are
typically performed to obtain agreement between deformations and forces calculated
by the structural analysis and those based on geotechnical analysis at the
structure/foundation (column-cap) interface. The resulting factored force effects
must be less than the factored resistance. This is an oversimplified description of
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the process but it describes the general procedure by which factored foundation
force effects are determined for each applicable limit state.

N

N 1

. -7\\———%
74 Fl Vr ;;rl
M, .\
Q, Reactions at column-cap interface

Q are obtained from structural analysis
i‘.M model of the bridge superstructure.
Vv

'\ These reactions are modeled as
axial, shear, and moment force
effects applied to the centroid of the

pile group.

Figure 2-1  Structural analysis of bridge used to establish foundation force effects
(modified from Brown et al. 2010).

In the structure model, the load factors in Tables 2-2 and 2-3 are varied over the
specified ranges to determine the load combinations resulting in maximum force
effects on the foundation. These maximum force effects are then used in the limit
state checks.

An example of the final structure loads determined for a 45 foot wide, three span
structure having a total length of 350 feet and a main span length of 100 feet is
presented in Figure 2-2. The structure will be subjected to both scour and seismic
events. At Abutment 1, the highest factored axial loads are 2548 kips for the
Strength | limit state and 1982 kips for the Service Il limit state. The abutment also
has a lateral shear load of 1980 kips transverse to the bridge for the Extreme Event |
limit state. At Pier 2, the highest factored axial loads are 5542 kips for the Strength |
limit state and 4307 kips for the Service Il limit state. The pier is also subjected to a
lateral shear load of 1267 kips longitudinal to the bridge, and a moment of 40,800 ft-
kips at the Extreme Event | limit state. Each limit state load combination is then
checked independently based on all appropriate factored loads and moments and
compared to the corresponding factored resistance and performance criteria
(tolerable deforations) for each case.
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oC
oo
oW
E= L
Load EV M
Comiination WA WS WL FR TU TS SE =g EL c cT o
Lt State E3 cE
EL ER
23] FL
cR LS
.
Strengih . 175 1 - - 1 0.501.20 . =z --- --- --- -
Strength o 135 1 --- --- 1 0.501.20 . =z --- --- --- ---
Strength o - 1 14 - 1 0501.20 TS = - - - -
Strength IV -t. - 1 - 1 1 osm | --- --- --- --- --- ---
Strength . 135 1 04 - 1 050120 e = - - - -
Extreme a [ 1 --- --- 1 --- --- --- 1 --- --- ---
Edneme . 05 1 - - 1 - - - - 1 1 1 1
Senice 1 1 1 03 1 1 1.001.20 - . - - - -
Sence 1 13 1 - - 1 | --- --- --- --- --- ---
Senice 1 03 1 --- --- 1 1.001.20 - = - - - -
Sensce IV 1 - 1 o7 --- 1 10| --- 1 --- --- --- ---
Failgue --- 15 --- --- --- --- --- --- --- --- --- --- --- ---
Fatigue - 07 - - - - - - - --- --- --- -
ADUTTECD 1 Azl ioacs 3t base of sbutment Pemendicular (o transverse) bo Erioge
Load (dps) 1252 2 0 0 0 0 0 0 0 1580 0 0 0 0 Total
Strengih 1565 1154 0 0 0 0 0 0 0 0 0 0 0 0 THE
Strength 1865 =] 0 0 0 0 0 0 0 i i i 0 i =
Strength 1865 0 0 0 0 0 0 0 0 i i i 0 i 1565
Strength 1878 0 0 0 0 0 0 0 0 0 0 0 0 0 1878
Strength 1565 7= 0 0 0 0 0 0 0 i i i 0 i vy
Extreme 0 0 0 0 0 0 0 0 0 1830 0 0 0 0 1380
Extreme 0 0 0 0 0 0 0 0 0 0 i i 0 i i
Sensce 1252 sE2 0 0 0 0 0 0 0 i i i 0 i 1814
Senice 1252 ] 0 0 0 0 0 0 0 i i i 0 i 1582
Sence 1252 450 0 0 0 0 0 0 0 0 0 0 0 0 17
Sensce IV 1252 0 0 0 0 0 0 0 0 i i i 0 i 1252
Fatgue 0 ] 0 0 0 0 0 0 0 i i i 0 i 4z
Fatigue 0 1 0 0 0 0 0 0 0 i i i 0 i 3l
Exveme | -Latersl shear oad 1380 Wps (Ensverse b0 bricge)
Fler 2 Azl acs 3 base of pler Longludingl [or transvenze] b0 Briige
Load (Wgs) I6ED 1267 0 0 0 0 0 0 0 3540 0 0 0 0 Total
Strength 335 217 0 0 0 0 0 0 0 0 0 0 0 0 5542
Strength [5 1710 0 0 0 0 0 0 0 i i i 0 i S5
Strength [5 0 0 0 0 0 0 0 0 i i i 0 i 335
Strength 3600 0 0 0 0 0 0 0 0 0 0 0 0 0 3800
Strength 325 1710 0 0 0 0 0 0 0 0 0 0 0 0 S
Extreme 0 0 0 0 0 0 0 0 0 1267 0 0 0 0 1267
Extreme 0 0 0 0 0 0 0 0 0 0 i i 0 i i
Sensce ED 1267 0 0 0 0 0 0 0 i i i 0 i 38T
Senice ZEED 1647 0 0 0 0 0 0 0 0 0 0 0 0 4307
Sensce TEED 1014 0 0 0 0 0 0 0 i i i 0 i T
Senice IV HED 0 0 0 0 0 0 0 0 0 0 0 0 0 280
Fatgue 0 =] 0 0 0 0 0 0 0 i i i 0 i 230
Fatigue 0 475 0 0 0 0 0 0 0 i i i 0 i 475

Exreme | - Moment af beser 40800 kR
Extreme | - Latersl shear load 1267 Kps {longiucinal to bricge)

Figure 2-2  Example of factored load calculation.
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2.4 NOMINAL AND FACTORED RESISTANCE

The nominal resistance, Ry, is calculated and then multiplied by the applicable
resistance factor to determine the factored resistance, R,. Nominal geotechnical
resistances and associated resistance factors are discussed in Chapter 7. Nominal
structural resistances and applicable resistance factors are presented in Chapter 8.
The factored resistance must be greater than or equal to the sum of all factored
force effects in all applicable limit states. The basic LRFD methodology equation is
given as:

ZUi?’iQi <R, =R Eq. 2-2
Where:

ni = load modifier based on ductility, redundancy, or operation
classification, applied to the force effect.

vi = load factor, statistically based multiplier applied to force effect.

Qi = force effect.

¢ = resistance factor, statistically based multiplier applied to nhominal
resistance.

Rn = nominal resistance.

R, = factored resistance.

The load modifiers for redundancy, nr, described in AASHTO Article 1.3.4 were
developed for superstructures. Paikowsky (2004) in NCHRP Report 507 defined
redundancy in driven pile foundation designs based on the number of piles in a pile
cap with redundant piles defined as 5 or more piles per pile cap and non-redundant
piles defined as 4 piles or less per pile cap. For non-redundant driven pile
foundation designs, AASHTO Article C10.5.5.2.3 recommends the resistance factor
be reduced by 20%.
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2.5 STRENGTH LIMIT STATES

The strength limit states ensure local and global strength and stability against
statistically significant load combinations occurring during the structure design life.
Strength limit state design of driven pile foundations includes an evaluation of the
nominal geotechnical and structural resistances as well as the loss of lateral and
vertical support in the design flood event (100 year) due to scour. For driven pile
designs, strength limit state considerations include:

e axial compression resistance of single piles and pile groups,

e uplift resistance of single piles and pile groups,

e lateral resistance of single piles and pile groups,

e bearing stratum punching failure,

e structural resistance in axial compression, combined axial and flexural
loading, and shear, and

e drivability including and driving stresses.

Geotechnical and structural strength limit state considerations are described in detalil
in Chapters 7 and 8, respectively of this manual.

2.6 SERVICE LIMIT STATES

The service limit states provide limits on stress, deformation, and cracking under
regular service conditions. Service limit state considerations in driven pile
foundation designs include:

e vertical deformation — settlement,

¢ horizontal movements,

e rotation,

e overall stability, and

e deformations due to scour at the design flood (100 year event).

Service limit state considerations are further discussed in AASHTO (2014) Articles
10.5.2.1 through 10.5.2.4 and associated commentary. All applicable service limit
state load combinations must be evaluated.
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2.7 EXTREME EVENT LIMIT STATES

Extreme event limit states ensure structural survival of a bridge under unique major
occurrences such as earthquakes, floods, and vehicle, vessel collisions, or blasts
with return periods significantly greater than the bridge design life. Extreme event
limit states for driven pile foundation design include:

e the check flood (500 year event) for scour,

e vessel collision,

e vehicle collision,

e Dblast loading,

e seismic loading, and

e other site-specific situations determined by the design engineer.

A liguefaction assessment is required as part of the design for multi-span bridges if
the site is classified as Seismic Zone 2, 3, or 4. Extreme event limit states are
discussed further in Section 7.4 of this manual.

2.8 CONSTRUCTION OF PILE FOUNDATIONS

Construction of a successful driven pile foundation that meets the design objectives
depends on relating the load requirements to the resistance requirements of the field
installation and resistance determination method. The means for obtaining such a
foundation must be explicitly incorporated into the plans and specifications as well
as adhered to in the construction administration.

A pile foundation must be installed to meet the limit state requirements for
compressive, lateral and uplift resistance. This may dictate driving piles for a
required nominal resistance or to a predetermined penetration depth established by
the designer to satisfy strength, service and extreme event limit state performance
requirements. Itis equally important to avoid pile damage or foundation cost
overruns by excessive driving. These objectives can all be satisfactorily achieved by
use of wave equation analysis, dynamic monitoring of pile driving, and/or static load
testing. Some agencies have calibrated and/or developed new dynamic formulas for
nominal resistance verification to replace more unreliable dynamic formulas such as
the Engineering News formula.

Knowledgeable construction supervision and inspection are the keys to proper
installation of piles. State-of-the-art designs and detailed plans and specifications
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must be coupled with good construction supervision to achieve desired results. Post
construction review of pile driving results versus predictions regarding pile
penetration resistances, pile lengths, field problems, and static and/or dynamic load
test nominal resistances is essential.

These reviews add to the experience of all engineers involved on the project and will
enhance their skills. In addition, the implementation of LRFD in pile foundation
design with rationally determined resistance factors makes it possible to use data
from the post construction review to improve the resistance factors for future
projects.

2.9 FOUNDATION SPECIALIST INVOLVEMENT

The input of an experienced foundation specialist is essential to produce a
successful driven pile foundation. A foundation specialist has both a structural and
geotechnical background in design and construction. The foundation specialist is
the most knowledgeable person for selecting the pile type, estimating pile length,
and choosing the most appropriate and cost effective method to determine the
nominal resistance. In some agencies, the role of the foundation specialist may be
divided amongst individuals and disciplines. Regardless of how the foundation
specialist role is fulfilled, geotechnical and structural expertise in both design and
construction knowledge is essential as design input.

The foundation specialist should be involved from the planning stage through the
design and construction process. In some project phases (i.e. preliminary
explorations, preliminary design, and final design), the foundation specialist will have
significant involvement. In other project phases, such as construction, and post
construction review, the foundation specialist’s involvement may be more of a
technical support role. The foundation specialist’s involvement provides the needed
continuity of design personnel in dealing with design related issues that develop
throughout the construction stage. The importance of this continuity of knowledge,
experience, and communication applies to all types of contracting methods.
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2.10 THE DRIVEN PILE DESIGN AND CONSTRUCTION PROCESS

The driven pile design and construction process includes aspects that are unique in
all of structural design. Because pile driving characteristics are related to the
nominal geotechnical resistance for most soils, they can be used to improve the
accuracy of the estimated nominal geotechnical resistance. In general, the various
methods of determining nominal geotechnical resistance from dynamic data such as
penetration resistance with wave equation analysis or with dynamic measurements
are more accurate than the static analysis methods based on subsurface exploration
information. It should be clearly understood that the static analysis based on the
subsurface exploration information has the primary function of providing an estimate
of the pile length for contractor bidding purposes.

Pile drivability is a critical aspect of the design process and must be considered
during the design phase. If the design is completed, a contractor is selected, and
then the piles cannot be driven, large additional costs can often result. Therefore, it
is absolutely necessary that driven pile foundation design and construction be linked
to a greater degree than in the design and construction of other foundation types.

During construction, the pile driving criterion is usually a blow count criterion that is
established at the early stage of field installation, and individual pile penetration
depths may vary depending on the subsurface variability. In some instances, piles
may need to meet a minimum penetration depth and a blow count criterion.

Minimum pile penetration depths are sometimes established to satisfy uplift or lateral
loads, or for serviceability consideration. In other cases, satisfying a required pile
penetration depth established from static analysis may be the sole pile installation
criterion.

The driven pile design-construction process is outlined in the flow chart of Figure
2-3. The design and construction process will be discussed block by block using the
numbers in the blocks as a reference and will serve to guide the designer through all
of the tasks that must be completed. The block border depicts whether the structural
engineer, geotechnical engineer, or construction engineer has the lead role for a
given step in the design or construction process. This highlights the importance of
interdisciplinary communication. The foundation specialist may perform some or a
portion of the outlined structural and geotechnical steps based on their background
and the organizational structure of the transportation agency.
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Figure 2-3  Driven pile design and construction process.
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Figure 2-3 Driven pile design and construction process (continued).
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Figure 2-3 Driven pile design and construction process (continued).
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Figure 2-3 Driven pile design and construction process (continued).

Figure 2-3 is representative of the key steps in a typical design-bid-build project.
The contractor in a design-bid-build project would be retained between Blocks 27
and 28, however the design and construction tasks for projects delivered using
design-build or construction manager/general contractor contracts will vary. Ina
design-build contract, the contractor would be retained early on in the process once
the project’s general requirements and preliminary supporting information has been
established. Hence, the early steps of the flow chart in a design-build contract will
vary. While the responsibility for the individual tasks will differ in alternative
contracting methods, the identified key design or construction activities are still
performed.
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Block 1: Establish Global Project Performance Requirements.

The first step in the design process is to determine the structure requirements.

1. Is the project a new bridge, a replacement bridge, a bridge renovation, a
bridge widening, a retaining wall, a noise wall, or sign or light standard?

2. Will the project be constructed in phases or all at one time?

3. What are the general structure layout and approach grades?

4. What are the surficial site characteristics?

5. What are the approximate foundation loads? What are the deformation or

deflection limits (total settlement, differential settlement, and lateral
deformations) for the service and extreme event limit states?

6. Will the structure be subjected to any extreme event limit states such as
seismic, scour, debris loading, vessel or vehicle impact, etc.?

7. Are there any special considerations to be evaluated such as lateral
squeeze?
8. Are there modifications in the design that may be desirable for the site under

consideration such as changes in substructure locations or span length?

9. Are there site or surrounding environmental considerations that must be
considered in the design (low headroom, utility conflicts, aggressive soil
environments, environmentally impacted soil and/or groundwater, limitations
on noise, vibrations, etc.)? These factors may influence the selection of
suitable deep foundation types, the deep foundation installation equipment,
as well as the need for installation aids such as predrilling for driven pile
options.

10.  Are there other factors influencing bridge span lengths including river
navigation channel width, road or railroad crossings; or avoidance of previous
foundations?
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Block 2: Determine Structure (bridge) Geometry, Substructure Locations and
Elevations.

The general bridge geometry, probable substructure locations, and the top of
foundation elevations should be established at this time.

Block 3: Define General Site Geotechnical Conditions, Scour, and Seismicity.

A great deal can be learned about the foundation requirements with even a very
general understanding of both the site geology and area geotechnical conditions.
Frequently there is information available on foundations that have been constructed
in the area. This information can be of assistance in avoiding problems. Both
subsurface exploration information and foundation construction experience should
be collected prior to beginning the foundation design. This step is sometimes
overlooked in practice.

If scour will be a design consideration, the hydraulic engineer should be consulted to
determine probable scour depths that may impact the foundation selection.

Block 4: Perform Preliminary Structure Modeling. Determine Preliminary
Substructure Loads and Tolerable Deformations.

Preliminary structural analysis and modeling of the proposed bridge or structure is
performed at this time. The strength, service and extreme event limit states load
demands and performance requirements at the foundation top have been
established. For major bridge structures such as cable-stayed and balanced
cantilever bridges, construction stage loads may govern the foundation design.

Many agencies also have total and differential settlement criteria for typical bridges
which must be satisfied by the design. Lateral deformation limits for the proposed
structure should also now be known and conveyed to the foundation specialist.

It is imperative that the foundation specialist obtain a completely defined and
unambiguous set of foundation loads and deformation limits in order to proceed
through the foundation design process. Accurate load information and deformation
criteria are essential in the development and implementation of an adequate
subsurface exploration program for the planned structure. It is important for the
foundation specialist to address the level of uncertainty in their deformation
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predictions and distinguish between total final loads and incremental loading such
that post-construction deformation can be distinguished from total deformations. Of
course, post-construction deformations are those of most interest.

Block 5: Develop and Execute Subsurface Exploration and Laboratory Testing
Program for Feasible Foundation Systems.

Based on the information obtained in Blocks 1-4, it is possible to make decisions
regarding the necessary information that must be obtained for the technically
feasible foundation systems at the site. The subsurface exploration program
including the associated laboratory testing must meet the project needs for design
and construction at a cost consistent with the size and complexity of the project.
Depending upon the project size and complexity, it may be advantageous to perform
the subsurface exploration program in phases, one for preliminary planning and
general site evaluation and a second phase for final design.

The results of the subsurface exploration soil boring and in-situ testing program
along with laboratory test results are used to prepare a subsurface profile; define soll
and rock parameters including strength, compressibility, parameter variation,
liquefaction susceptibility, and seismic earth pressure parameters; subsurface water
conditions, as well as identify critical cross sections for design. The design profile
for each substructure location will be developed from the information gathered in this
block and used in later blocks. Site characterization and design parameter selection
are covered in detail in Chapters 4 and 5.

Block 6: Evaluate Information and Determine Candidate Foundation Systems.

The information collected in Blocks 1-5 must be evaluated and candidate foundation
systems selected. The question to be answered is what candidate foundation
systems are appropriate for consideration based on the site conditions. This
guestion will be answered based primarily on the strength and compressibility of the
geomaterials, the proposed loading conditions, the project deformation limits, the
project schedule, and the foundation cost. Shallow foundations may be determined
to be technically feasible and the most economical solution provided all project
performance requirements can be addressed. Ground improvement techniques in
conjunction with shallow foundations should also be evaluated. Shallow and deep
foundation interaction with approach embankments and approach slabs must also
be considered.
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If the performance of a shallow foundation exceeds the established deformation
limit, or if excessive scour is a concern, a deep foundation must be used. The
design of shallow foundations and ground improvement techniques are not covered
in this manual. Information on design consideration for shallow foundations can be
found in Munfakh et al. (2001), Kimmerling (2002), Samtani et al. (2010), and in
Abu-Hejleh et al. (2014). The effects of settlement can be more comprehensively
examined by using a construction point concept and estimating the differential
settlement between supports as discussed by Modjeski and Masters, Inc, et al.
(2015) in SHRP 2 Report S2-R19B-RW-1. Information on ground improvement
techniques can be found in Elias et al. (2006) and at http://www.geotechtools.org.
The selection of the appropriate foundation system including cost considerations is
discussed in greater detail in Chapter 3, while Chapter 6 presents pile type selection
along with advantages and disadvantages.

Block 7: Determine if a Deep Foundation is Required.

Once candidate foundation systems have been identified in Block 6, it has been
determined that a deep foundation system is required. Therefore, driven piles and
other deep foundation systems must be further evaluated. These other deep
foundation systems are primarily drilled shafts, but also include micropiles,
continuous flight auger (CFA) piles, and other drilled-in deep foundation systems.
The questions that must be answered in deciding between driven piles and other
deep foundation systems will center on both the technical feasibility and the relative
costs of available systems. Foundation support cost can be conveniently calculated
based on the cost per unit of load carried. The foundation cost analysis should
address all temporary and permanent requirements (e.g., pile caps, effects of pile
cap elevation, cofferdams, use of vertical and/or batter piles, load tests, construction
control tests) for that specific foundation type. In addition, constructability and
productivity (i.e., schedule) must be considered. This manual is concerned with
driven piles; therefore other types of deep foundations will not be further discussed.
Design guidance on drilled shafts can be found in Brown et al. (2010). For micropile
design guidance refer to Sabatini et al. (2005), and for CFA piles refer to in Brown et
al. (2007). Economic considerations in the foundation selection process are
discussed in Chapter 3.
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Block 8:  Select 2 to 5 Candidate Driven Pile Types and Sections for Further
Evaluation.

At this point on the flow chart, the primary concern is for the design of a driven pile
foundation. The pile type must be selected consistent with the factored loads
(compression, tension, and lateral) to be resisted per pile. Consider this problem.
The general magnitude of the pier load is known from the information obtained in
Blocks 1 and 4. However, a large number of combinations of pile types and nominal
geotechnical resistances can satisfy the nominal resistance requirements for the
factored loads. Inthe case of axial compression resistance, should twenty piles with
a nominal resistance of 225 kips be used to support a 4,500 kip factored load, or
would it be better to use ten piles with a nominal resistance of 450 kips, or five piles
with a nominal resistance of 900 kips? This decision should consider the nominal
structural resistance of the piles, the realistic geotechnical nominal resistances and
deformations for the soil conditions at the site, the cost of the different pile types,
and the capability of construction contractors to install the piles. Changes in the
foundation selection from twenty 225 kip piles to five 900 kip piles will also affect
structure and foundation response and therefore adjust the lateral and axial loads as
well as pile cap requirements and costs. At this point in the design process, 2to 5
candidate pile types and/or sections that meet the general project requirements
should be selected for further evaluation. Pile type and selection considerations are
covered in greater detail in Chapter 6.

Approximate loads determined in Block 1 were refined in Block 4. At those stages of
the design process, the other aspects of the total structural design were probably
insufficiently advanced to establish the final factored loads. By the time that Block 7
has been reached, the foundation loads and deformation limits should be closer to
being finalized.

If there are extreme event limit states applicable to the structure, the design must
satisfy those load and deformation requirements. Vessel impact will be evaluated
primarily by the structural engineer and the results of that analysis will give factored
loads for that case. There may be stiffness considerations in dealing with vessel
impact since the design requirement is basically that some vessel impact energy be
absorbed.

Scour presents a different requirement. AASHTO (2014) Article 3.7.5 requires
changes in foundation conditions resulting from the design flood (100 year event) be
evaluated at the strength and service limit states. Foundation condition changes
from the check flood (500 year event) must be considered and evaluated at the

29



extreme event limit state. Scour is not a force effect. However, scour can change
the substructure conditions and alter the consequences of force effects acting on the
structure. It must be assured that after scour, the pile will still satisfy geotechnical
and structural resistance demands.

In many locations, seismic design will be an important factor. Since the 1971 San
Fernando Earthquake, significant emphasis has been placed on the design of
highway bridges in seismic events. AASHTO (2014), Section 10, Appendix A10
discusses seismic analysis and design requirements. Additional seismic design
guidance is available in GEC-3, LRFD Seismic Analysis and Design of
Transportation Geotechnical Features and Structural Foundations, by Kavazanjian
et al. (2011), as well as in the AASHTO (2011) Guide Specifications for LRFD
Seismic Bridge Design, 2nd Edition, with 2012, 2014, and 2015 Interims.

Block 9: Calculate Nominal and Factored Structural Resistance.

The maximum nominal and factored structural resistances of all candidate pile types
in axial compression, bending, and combined axial compression and flexure
resistance are calculated at this time. Pile structural resistance is covered in
Chapter 8.

The maximum factored resistance for a given pile type is the lesser of the factored
structural resistance or the factored geotechnical resistance for that pile.

Block 10 Calculate the Nominal and Factored Geotechnical Resistance, as well as
Perform a Preliminary Drivability Assessment of Candidate Pile Types.

The maximum nominal and factored geotechnical resistance in axial compression
and uplift are calculated as a function of pile penetration depth for all candidate pile
types. A static analysis method(s) appropriate for the pile type(s), the soil
conditions, and the loading condition should be selected. These methods are
presented in detail in Chapter 7. Factored geotechnical resistances are most often
calculated based on the resistance determination method used in the field but can
also be calculated solely on the basis of an appropriate static analysis method.
Review of the nominal and factored geotechnical resistances versus depth for
candidate pile sections and various resistance determination methods assists the
designer in selecting the foundation type and associated resistance determination
method.
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Deposits within the subsurface strata which are unsuitable as load carrying
geomaterial must be identified. The geotechnical resistance from these layers must
be determined by static analysis. Unsuitable layers may include urban fills, organic
deposits, soft and very soft cohesive soils, as well as potentially scourable or
liqguefiable materials.

Preliminary wave equation drivability assessments of candidate pile sections should
be performed at this time. These analyses must consider the geotechnical
resistance from suitable as well as unsuitable layers. A commonly available pile
hammer having a ram weight of 1 to 2% of the required nominal resistance is a good
initial trial hammer size for preliminary drivability assessments.

Block 11: Estimate the Preliminary Number of Piles, Preliminary Group Size, and
Resolve Individual Pile Loads at All Limit States.

The preliminary number of piles at a substructure location can be estimated by
dividing the largest factored axial load by an individual pile’s factored geotechnical
resistance. Axial compression and axial tension requirements should both be
considered. In some cases, lateral load requirements may control the design.
Therefore, similar past experience may also be used to estimate the preliminary
number of piles, trial group configurations, and pile spacing. Using the factored
loads with the trial group configurations, determine the limit state reactions on the
substructure unit and the resulting maximum factored load per pile at the strength,
service, and extreme limit states for each candidate pile type.

Block 12: Estimate Pile Penetration Depth for Axial Compression Loads and
Check Group Efficiency in Axial Compression.

For each candidate pile section and each group configuration, determine the
estimated pile penetration depth where the factored geotechnical resistance
exceeds the factored load. Note that the factored geotechnical resistance will vary
based on the resistance verification method. Block 12 establishes an estimated pile
penetration depth for compression loading for each of the candidate pile types. Note
this estimated depth is a function of the resistance determination method. Check
that group axial compression resistance meets design requirements. If the group
resistance group does not satisfy requirements, modify the design.
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Block 13: Establish Minimum Pile Penetration Depth for Axial Tension Loads.

Determine the maximum factored axial tension load to be resisted in any limit state.
From the nominal axial tension resistance versus depth results calculated in Block
10, determine the minimum pile penetration depth necessary to obtain a factored
geotechnical resistance greater than the maximum factored axial tension load.

Block 13 establishes a minimum pile penetration depth for tension loading for each
of the candidate pile types. Note that this minimum depth is a function of the
resistance determination method. Check that group axial tension resistance meets
design requirements. If axial tension requirements cannot be achieved, modify the
design. Return to Block 8 and select a new pile type or new pile section, or return to
Block 11 and evaluate new group configurations.

Block 14: Establish Minimum Pile Penetration Depth for Lateral Loads.

Determine p-y models and required geomaterial properties for each layer in the
subsurface profile. The p-y model and parameters chosen depend on the soil or
rock response being modelled in the service or extreme event limit case. Results of
this analysis will be compared to the tolerable lateral deformation requirements.
Check that the deformation and lateral resistance of the trial group configuration
meets design requirements. Determine the minimum pile penetration depth
necessary to resist the maximum applied lateral loads within the permissible
deformation limit. This depth establishes the minimum pile penetration depth for
lateral loading for the candidate pile type and group. This topic is covered in greater
detail in Section 7.3.4.2. If lateral deformation requirements cannot be achieved,
modify the design. Return to Block 8 and select a new pile type or pile section, or
return to Block 11 and evaluate new group configurations.

Block 15: Establish Pile Penetration Depths that Satisfy Tolerable Deformations
Based on Group Settlement Computations.

Preliminary group configurations should now be evaluated for settlement. One of
the primary objectives at this stage is to determine if a minimum pile penetration
depth is required and, if so, to determine the required minimum pile toe elevation. In
some subsurface profiles, piles could attain the requisite nominal resistance near the
bottom of a dense layer overlying a compressible layer. In order to satisfy tolerable
deformation limits, it may be necessary to drive through, or otherwise penetrate, the

higher, suitable layer to preclude large future settlements. Hence, in some
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stratigraphy cases, it is necessary to calculate group settlements over a range of pile
termination depths to determine the minimum (highest pile toe elevation) and, in
unique stratigraphy cases, the maximum (lowest pile toe elevation) acceptable for
tolerable group settlements. Any penetration depths that will result in intolerable
deformations should be identified. Where appropriate, Block 15 establishes a
minimum pile penetration depth, maximum pile penetration depth, or both. If
tolerable deformation requirements cannot be achieved, modify the design. Return
to Block 8 and select a new pile type, or return to Block 11 and evaluate new group
configurations.

Block 16: Check Pile Drivability.

Identify the maximum pile penetration depth required by each block in Block 12
through Block 15. Perform a wave equation drivability analysis for each candidate
section to the maximum pile penetration depth determined in any of these blocks.
Candidate pile types that cannot be driven to the required nominal resistance and/or
the minimum pile penetration depth without exceeding material stress limits and
within a reasonable blow count of 30 to 120 blows per foot with appropriately sized
driving systems are eliminated at this time. It should be noted that 120 blows per
foot or 10 blows per inch is considered refusal driving conditions by many hammer
manufacturers. Therefore, depending on the expected driving conditions (e.g., an
extended duration of hard driving compared to a quick transition onto hard rock), it
may more reasonable to assess candidate pile drivability based on an upper limit of
96 blows per foot or 8 blows per inch. In some cases pile installation aids such as
jetting or predriling may be evaluated subject to other design limitations.

The drivability analyses should also consider what influence the group configuration
(pile spacing) and construction procedures and constraints (i.e., predrilling,
cofferdams, etc.) may have on pile installation conditions. Ifthe selected pile type
does not meet drivability requirements, a different pile section, pile type, or group
configuration is required. Return to Block 8 and select a new pile type, or return to
Block 11 and evaluate new group configurations.

Block 17: Determine Location of Neutral Plane and Magnitude of Drag Force.

The neutral plane location for drag force evaluation is performed in this step. Note
that the neutral plane location may have already been determined in Block 15

depending upon the settlement analysis approach selected by the designer. The
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neutral plane is defined as the location where the sum of the permanent structure
load and drag force is balanced by the sum of the shaft and toe resistances
occurring below the neutral plane. The maximum drag force, caused by differential
movement between the pile and the geomaterials, occurs at the neutral plane. The
drag force magnitude is related to the pile properties, loading conditions, soil stress
state, and deformation. The sum of the permanent structure load plus the maximum
drag force should be less than the pile’s factored structural resistance. If it is not, a
different pile section or pi