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ABSTRACT 
 
Non-destructive testing of piles has gained increased acceptance for various purposes, e.g., quality control/quality assurance, verification of 
existing conditions, and quantification of dimensions.  The correct use of this technique can greatly simplify and expedite investigation, and 
be economical in addressing concerns or questions on pile conditions.  Equally, its incorrect use can cause controversies, delays, and/or 
create adverse reputation for the technology. 
 
This paper presents three case histories on the use of the low strain, pile integrity testing (PIT) for different pile types and for different 
reasons.  In this paper, the term “pile” is used generically and implies all types of deep foundations, e.g., driven or drilled-in, concrete or 
steel, piles or piers, etc.  Initially, a brief overview of the technology along with its capabilities and limitations will be presented, followed by 
the case histories.  The first case is related to the construction of a new power plant at the location of existing pile-supported buildings, 
necessitating the collection of information on the condition and length of these piles so that they can be used as part of the new foundations 
for the power plant once the existing buildings were demolished.  The second case history is related to the construction of a hotel, involving 
augered cast-in-place piles. PIT was performed to evaluate the condition of a failing test pile as part of the quality control process. The third 
case history is related to investigating the quality of several drilled shafts for a retail facility. PIT was performed to obtain an estimate of the 
shaft lengths and gather information on overall shaft quality.   
 
The case histories will provide details of structures, their foundations, and the PIT application.  Along with the PIT results, other relevant 
information such as subsurface conditions and pile load test results will be presented, where available. The collected PIT data will be 
compared with pile information available prior to initiating the program to assess the validity and the applicability of the PIT technique. 
 
 
INTRODUCTION 
 
Deep foundation construction is an inherently “blind” process, 
i.e., the final product is not readily available for visual inspection. 
 The quality control/quality assurance process for such 
foundations is almost always through indirect measurement of 
other parameters, such as performance of the installation 
equipment, resistance to driving or drilling, examination of 
drilled cuttings, etc.  Therefore, the quality of the final product is 
often a function of the installer’s know-how and the inspector’s 
experience.  Even the most experienced foundation contractors 
acknowledge that there is an initial “learning” period for each 
project, essentially impacted by ground conditions, equipment 
utilized, and installation processes. A process whereby 
confidence in the quality of the installed pile is expeditiously 
attained is essential to the contractor to confirm the adequacy of 
the deployed construction methods and vital to the engineer to 
verify the competence of the foundation installed.  The PIT 

method can be a valuable tool in rapidly making these 
evaluations as piles are constructed. 
 
Similarly, PIT can be used for obtaining quantitative information 
on existing deep foundations.  In recent years, increased growth 
in building renovations has necessitated evaluation of the 
existing building foundations for upgrading or retrofit.  In some 
cases, however, especially in the case of old or historic structures, 
very little, if any, information may be available of the actual 
foundations for the structure.  In such cases, PIT would be a 
valuable tool to not only obtain information on the as-built 
foundation quality but also on length of the piles. Such 
information will provide the essential parameters to perform an 
evaluation of the piles to judge the relevance or adequacy of the 
foundations with respect to the planned construction. 
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PIT  METHOD 
 
PIT is a non-destructive testing technique, sometimes referred to 
as the sonic pulse echo method. It involves applying low strains 
to a foundation element using light hammer impacts and 
evaluating the collected force and velocity records to deduce 
qualitative and quantitative information for the foundation 
element. Standards covering PIT performance include ASTM 
D5882 (ASTM 2003). 
 
 
Background 
 
Details of the theoretical background and the development of PIT 
are discussed in various literatures (Rausche and Goble 1979, 
Reiding et. al. 1984, Davis and Hertlein 1991, Rausche et. al. 
1991, and Rausche et. al. 1992).  The basics of the concept are 
highlighted below. 
 
PIT development is based on the theory of wave propagation in 
media. For a linear elastic pile having a length an order of 
magnitude greater than its width, stress waves travel in the pile at 
a wave speed, c, such that 

                                     ρ/Ec =                                         (1) 

where E is the pile material elastic modulus and ρ is its mass 
density. The applied force, F, imparted by hammer impact and 
the particle velocity, v, at any point are related such that 
                                           F = Z v                                             (2) 

Where Z is proportionality constant, also known as impedance; it 
is a measure of pile resisting change in velocity. Pile impedance 
for various size piles can be defined as 
                                        Z = E A / c                                          (3) 

Change in impedance is related to change in pile cross-sectional 
area, A, as well as pile material quality.  Increase in pile 
impedance or soil resistance forces results in a decrease in 
measured pile top velocity.  Conversely, decrease in pile 
impedance, results in increased velocity. By observing changes 
in impedance, pile quality can be assessed and dimensions 
estimated. 
 
 
Equipment 
 
The equipment that is in common use for pile foundation 
evaluation is manufactured by Pile Dynamics, Inc.  The PIT 
equipment is very compact and readily portable, consisting of a 
hammer, a motion sensor, and a processing unit.  The hammer 
size varies from about 1 to 10 lbs.  Sometimes, the hammer is 
fitted with a pressure sensor or strain gage to measure the applied 
force.  The motion sensor generally consists of an accelerometer. 
The processor stores and analyzes the recorded signals.  
Components of the PIT are shown in Fig. 1. 
 

 
 

 
Fig. 1.  Components of PIT (Rausche et. al. 1992) 

 
 
In utilizing PIT, one must recognize the capabilities and 
limitations of the method.  The quality of the PIT results is a 
direct function of the operator’s familiarity with the system and 
experience with pile foundations, e.g., factors such as pile surface 
preparation for attachment of the sensors, use of certain hammer 
weight for certain pile size, data processing, etc., can readily 
influence the results if their contributions are not recognized.  
Foundations such as drilled shafts or augered cast-in-place piles 
with multiple or large variation in cross-sections can result in 
complex records that are difficult or impossible to analyze (GRL, 
1999).  Also, generally piles with L/D ratio not exceeding 30 can 
produce the necessary signals, without excessive damping due to 
soil resistance or pile material properties, although this rule can 
sometimes be deviated and piles with greater ratio reasonably 
tested under special circumstances. PIT does not produce 
information on pile capacity or pile load transfer mechanisms.  
PIT is, however, capable of producing information on pile 
quality, e.g., the presence of defects such as voids or breaks, and 
on pile length.  Even these capabilities are impacted by 
assumptions that will need to be made during signal processing, 
e.g., assumptions on the propagation of wave speed based on 
judging the pile materials. In addition, even under ideal 
conditions, it is prudent to allow a level of uncertainty in the 
results although the level of uncertainty is affected by the 
confidence in available information. It is not uncommon to 
assume PIT results on pile length to vary by as much as 10%, 
especially that wave speed variations of 5%± are known to be 
quite possible due to varying material quality, e.g., concrete.   
 
 
CASE HISTORIES 
 
Three case histories on the use of the PIT method are presented 
below for various pile types and projects. 
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Case History 1: Raymond Step-Taper Pile 
 
A power plant was planned for construction in Bethesda, 
Maryland.  The facility would be constructed at the location of 
existing buildings after demolition.  The existing buildings were 
constructed in 1950 and were supported on about 1,300 piles; 
construction of the new power plant required utilizing portions of 
these piles.  Very little information was available on the existing 
piles. The pile types were not referenced on any of the available 
drawing.  The pile capacity was unknown as well, although 
drawing notes indicated that the pile caps were designed for 30-
ton piles.  Reference was available on drawings for pile load 
tests; however, the results were not available. The available 
specific information consisted only of few design parameters, 
namely pile tip diameter of 8 to 10 inches and pile tip elevation 
(El.) from El. +253 to +267 feet.  The lack of adequate 
information on existing foundations, and the need to utilize these 
foundations for the new power plant, resulted in undertaking an 
investigation that consisted of subsurface exploration by test 
borings, exposing existing piles for visual examination, static 
load testing of an existing pile, and performing PIT on the test 
pile. 
 
Geology.  The project area is within the eastern Piedmont 
physiographic province, underlain by the metamorphic rocks of 
the Whissihickon Formation, consisting of schist and gneiss. 
Results of a subsurface investigation by test borings including 
Standard Penetration Tests (SPT) and supplemented by borings 
taken in 1950 is presented in Fig. 2. 
 

 
 

Fig. 2.  Subsurface Profile at the Power Plant Site 
 
 
The results indicated the presence of random fill, underlain by 
weathered rock and bedrock. The fill varied in thickness from 
about 20 to 25 feet, consisted of loose to medium dense low 
plasticity micaceous silt (ML) with varying sand contents, and 
included debris such as concrete, wood, wire, and cement grout 
from a previous construction. Weathered rock (residual soils and 
friable decomposed rock) was present below the fill, extending to 
depths from 50 to at least 75 feet, and consisted of dense to very 
dense low plasticity micaceous sand (SM) with silt and gravel. 
SPT values exceeding 100 blows per foot were common with 
greater depth, indicating increase in density and a lower degree 
of decomposition with depth in these materials. Other indices for 
these soils found in laboratory tests included water content 

ranging from 10 to 20%, liquid limits of 30 to 40, plasticity index 
of 7 to 10, and fines content of 30 to 33%.  The actual depth to 
intact rock was not known at the site; however, refusal to SPT 
sampling, defined as 100 blows per 2 inches or less of 
penetration, was recorded in some borings at a depth of about 50 
feet.  Groundwater level at the site was at depths from about 25 
to 45 feet, probably influenced by on-going dewatering for 
nearby construction.  
 
Pile Examination.  A test pit was excavated at the location of one 
of the existing pile caps.  The upper portion of 2 of these piles 
was exposed for visual examination.  The piles were observed to 
be helically corrugated metal, concrete filled, with a top diameter 
of about 14 inches at the pile cap. A portion of one pile was cut 
out for further examination and was found to be in reasonably 
sound condition.  A small 5.5-inch long and 2.5-inch deep void, 
however, was observed in the pile cross-section. No steel 
reinforcements were observed within the pile.  Based on these 
observations, the pile was identified as a Raymond Step-Taper 
Pile.   
 
Raymond Step-Taper Piles were developed by Raymond 
Concrete Pile Company, founded in 1897, and were very 
common and popular in the mid 1950’s.  They were 
essentially discontinued around the mid 1990’s. They were 
typically constructed of steel shells of 12 to 20 gauges in 
thickness, in basic section lengths of 4, 8, 12, and 16 feet.  
The shells had nominal diameters ranging from about 8.5 to 
18.5 inches.  The nominal tip diameters typically ranged from 
about 8 to 11 inches.  The tip of the pile was commonly 
closed, with a welded flat steel plate.  The shells were 
helically corrugated to withstand lateral ground stresses after 
installation.  Internal reinforcement for these piles was not 
typically provided unless the piles were designed for uplift, 
high lateral loads, or for unsupported lengths.  The piles were 
commonly installed by placing a steel mandrel inside the shell, 
driving the mandrel and shell to the required resistance or 
elevation, withdrawing the mandrel leaving the shell in place, 
removing excess shell, and filling the shell with concrete to 
the required cut-off elevation.  The most common pile length 
was generally in the 50- to 80-foot range with a design 
compression capacity commonly in the 40- to 100-ton range. 
 
PIT Results.  PIT was performed on one of the exposed piles 
to obtain information on pile quality and pile length.  An 
accelerometer was attached to the pile top and several hammer 
blows were applied to the pile top to obtain velocity records 
for the pile.  The hammer impact generates transient 
compression wave that travels down the pile length to its 
bottom where it is reflected back to the pile top and recorded 
by the accelerometer. The velocity profiles were recorded and 
processed.  Records were obtained with 3 different hammer 
weights and a sufficient number of records were obtained with 
each hammer.  Only records containing clear pile features 
were processed and retained.  The processing assumed a wave 
speed of 13,780 feet/sec, and included amplifying, filtering, 
and adjusting the records prior to final plotting for 
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presentation of a clear pile toe signal. A typical velocity 
record for the pile is shown in Fig. 3. 
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Fig. 3.  Typical PIT Record for the Raymond Step-Taper Pile 
 
 
Although only one record is presented herein, all PIT records 
indicated strong reflection at a depth of about 28.5 feet (8.7 
m) below the impact surface.  The reflections reveal the pile 
toe.  Therefore, the test pile is most likely 28.5 feet long, 
corresponding to a pile tip El. +257 feet.  Based on available 
information from the original pile design, piles in and around 
the area were noted to have been designed for a tip El. +255 
feet which is in close agreement with El. +257 feet indicated 
by the PIT results, as shown in Fig. 4.   
 

 
 

Fig. 4.  Comparison of PIT Record with Available Information 
 
 
Despite lack of records on the actual as-built pile tip, the tip 
elevations referenced on original drawings appeared plausible 
for the given piles based on a review of the subsurface soil 
conditions.  Therefore, assuming El. +255 feet as reference 
per original drawings, the PIT prediction on the pile length 
was about 7% of that reported on the design drawings.  
Additionally, the possibility that the actual as-built pile tip is 
in fact at El. +257 feet, as indicated by PIT, should not be 
ruled out, in which case the uncertainty in pile length as 
estimated by PIT would be remarkably minimal. 
 
It should also be noted that the PIT records indicated no 
measurable defects along the pile length. 

Pile Load Testing.  Subsequent to performing the PIT, the pile 
was subjected to a compression “short” load test to evaluate 
its load-carrying capability, as shown in Fig. 5.  A reload 
cycle was included in the test for the first cycle possibly 
lacking reliability. The failure load was estimated at about 170 
tons.  For a factor of safety of 2.0 and 3.0, an allowable 
compressive capacity for this pile would be about 85 and 55 
tons, respectively, which are substantially higher than the 30-
ton capacity reported on drawings for the design of the pile 
caps. 
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Fig. 5.  Compressive Load Test Results on Test Pile 

 
 
Based on available subsurface information, the ultimate 
compressive capacity of a single pile was also conservatively 
estimated using static calculations, calculated as about 60 
tons. For a factor of safety of 2.0 and 3.0, the allowable 
compressive capacity would be about 30 and 20 tons, 
respectively.  The calculated static capacity is in general 
agreement with the reported design capacity for the pile caps, 
although it is less than one-half that indicated by the load test 
result, as shown in Fig. 5.  
 
The results indicated significant variation between available 
information and the pile capacity as evidenced by the load test 
result.  The exact reasons are not known and would be 
difficult to determine.  However, variations between design 
and as-built conditions, such as pile size, step taper, length, 
driving energy, and subsurface conditions, are considered 
major factors among many others that could cause variations 
in capacity.  Also, the influence of the pile’s helical 
corrugation on its capacity was not accounted for in the 
calculations, yet is expected to be reflected in load test results 
as higher failure load. It is also noted that the groundwater 
level during the load test period was substantially lower than 
that previously documented, although is not expected to 
influence the results to the extent that were observed.  It is 
more likely that the higher capacity from the load test, in order 
of influence, is impacted by key factors such as higher driving 
energy during pile installation, denser soils near the bottom of 
the pile, and the pile helical, step taper configuration.  Given 
the variations that could exist in the nearly 1,300 existing piles 
and that any justifiable increase in pile capacity would have 
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required redesign and retrofit of the existing pile caps, the 
piles were assigned an allowable compressive capacity of 30 
tons each, as reflected on the original drawings for the design 
of the pile caps. 
 
 
Case History 2: Augered Cast-in-Place Pile 
 
PIT was performed on a 60-foot long, 14-inch diameter 
augered cast-in-place (auger-cast) pile installed for a hotel in 
Ocean City, Maryland. The integrity of the test pile was in 
doubt after the pile failed at a static load of 83 tons, far short 
of the anticipated load of 110 tons.  
 
Geology.  The soil conditions at the site consisted of sand. 
Below a depth of 18 feet, the sand was primarily loose.   
 
PIT Results.  An accelerometer was mounted on the pile top 
and several hammer impacts were applied to generate a 
transient stress wave along the axis of the pile. Acceleration 
records were collected, automatically integrated over time, 
and the resulting velocity records were stored.  The recorded 
data was reprocessed in the office, based on an assumed wave 
speed of 13,000 feet/sec. Several records were obtained; a 
typical record is shown in Fig. 6.  
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Fig. 6.  Typical PIT Record for the Auger-Cast Pile 
 
 
The records indicated major change in (positive) velocity for 
the pile at about 15 feet below the top of the pile, with 
resulting decrease in pile impedance. Such sudden, sharp, 
positive increase in velocity suggests “necking” of the pile. 
The pile toe, reported at 60 feet, was not made evident by the 
records. The observed major impedance reduction at 15-foot 
is due to a major change in the pile cross-section at that depth, 
attributed to major discontinuity, which is the likely cause for 
the pile failing to hold the required static test load. Therefore, 
PIT successfully provided an answer to the likely reason for 
the premature failure of the test pile. 
 
 
Case History 3: Drilled Shaft 
 
A large number of drilled shafts were installed for a retail 
facility in Round Rock, New Jersey. The shafts were 24 
inches in diameter; each shaft was designed for a length of 21 
feet. After installation, the actual lengths of the shafts were 

questioned. PIT was initiated to obtain an estimate of the as-
built length of the shaft.  
 
Geology.  The subsurface conditions at the site consisted of 
sand and gravel, sometimes with silt, in the upper 3 to 5 feet 
followed by silty clay or silty sand to a depth of 9 to 12 feet, 
and finally glacial till to the boring termination depth of 20.5 
feet.  
 
PIT Results.  Upon accelerometer installation, impact was 
applied to the shaft top by different size hammers to generate 
the stress waves in the shaft. Several records were obtained 
from each shaft; the records from each shaft were averaged, 
filtered, and exponentially amplified to enhance record 
features. Only records with clear indication of shaft features 
were recorded. Once sufficient data was collected from a 
shaft, the accelerometer was removed and installed on the next 
shaft and the testing continued. More than 50 shafts were 
tested in a 3-day period. 
 
The data was reprocessed in the office, based on a wave speed 
of 13,000 feet/sec, and plotted. Selected records are shown in 
Fig. 7.  
 

 
                                                                                (a) 

 
 
 
 
 
 
 
                                                                                       (b) 

 
 
 
 
 
 

 Fig. 7.  Selected PIT Records for the Drilled Shaft 
 
 
As discussed earlier, the velocity response is a function of the 
soil resistance forces and changes in pile impedance. A slow, 
mild decrease in velocity over the pile length signifies the 
effects of soil resistance forces.  However, a sudden, sharp 
decrease indicates a “bulge,” i.e., increase in pile diameter, 
with resulting increase in pile impedance. These features are 
demonstrated in Fig. 7.  Figure 7(a) shows the shaft toe 
reflection at about 24 feet, indicating the foundation to be 
about 3 feet longer than the design requirement of 21 feet.  In 
contrast, Fig. 7(b) indicates a sudden, sharp decrease in the 
velocity response around a depth of about 12 feet, a strong 
indication of an increase in the pier diameter at that depth. 
This feature precluded determining the actual foundation 
length for this particular shaft by preventing adequate energy 
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traveling to the pile toe to obtain a clear reflection from its 
base. The “reflective” positive velocity at a depth of about 23 
feet, as expected from the wave propagation theory, masks 
any possible toe signal. PIT was successful in supplying 
information on the as-built condition of more than 50 piers, 
although in a few cases the results were found inconclusive 
due to foundation features and the limitations of the method.  
 
 
CONCLUSIONS 
 
Since the late 1980’s, PIT has gained wide acceptability in the 
foundation engineering and construction community and has 
become an important tool for verifying pile integrity or pile 
length.  PIT can be successfully used during initial stages of a 
construction to assist engineers and contractors with quality 
control/quality assurance needs.  It is also a valuable tool to 
quickly assess as-built foundation features.  
 
The method offers several advantages over other testing 
methods, including other non-destructive tests, for its rapid 
deployment, mobility, speed, and cost. A large number of 
foundations can be tested in a short time using PIT, probably 
as many as 20 foundations in one day. It is capable of quickly 
producing information on the possible presence of defects such 
as voids, breaks, discontinuities, or inclusions, and provides 
estimates on pile length.  The successful application of the 
technology, however, requires understanding its limitations as 
well, including  operator’s familiarity with the system and 
experience with pile foundations, applications to drilled shafts or 
auger-cast piles with potentially multiple or large variation in 
cross-sections, L/D ratio limits, and only where accuracy on pile 
length within 10%± is tolerable.  
 
Where PIT is found to have limitations, other non-destructive 
testing methods that can overcome certain PIT limitations may 
be considered. Obviously, these tests involve a higher level of 
sophistication, require more time to perform, and are more 
costly. Discussions on other possible testing techniques are 
beyond the focus of this document. 
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