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ABSTRACT 
 
Development of a major industrial facility required support of large loads from machine foundations.  The site was underlain by 
highly variable karstic limestone conditions, which resulted in irregular depths to rock, very soft residual soil layers, and potential for 
voids in the rock and soil matrix.  Foundation mats on micropiles were selected for support of the machines.  The benefits associated 
with the micropiles were the speed of installation, and relative cost and schedule savings.   
 
Two load tests were performed before the start of micropile installation. One of these tests failed prematurely. A third test, performed 
during the initial stages of construction, also failed prematurely. Pile Driving Analyzer (PDA) testing of micropiles was used to 
investigate the capacity and variability of production piles that were already installed. The authors believe this may be the first 
application of the PDA technology to estimate the carrying capacity of micropiles bonded into rock. Because of the lack of previous 
experience in this application of PDA testing, suitable testing procedures needed to be developed in the field to reduce the potential for 
damage of the production micropiles, and to assess the accuracy of the tests. The results of the testing program showed that PDA 
testing may provide very accurate estimates of the capacity of micropiles bonded into rock.  This paper discusses the techniques used 
for PDA testing of the micropiles, and compares the results of the PDA tests to the data from static load tests. The paper also contains 
a brief discussion on the site conditions, and the effect of the construction methods on the measured capacity of the micropiles and 
their variability.  
 
 
INTRODUCTION 
 
Micropile technology has evolved significantly since its 
inception in the 1950s. Early applications of micropiles in 
Europe consisted of lightly loaded groups of elements 
intended to enclose and reinforce an unstable soil mass for 
slope stabilization or underpinning of historic buildings (Lizzi, 
1982).  Micropile technology developed slowly in Europe over 
the next 20 or 30 years, until publication of successful case 
histories induced its rapid growth in the United States, where 
it evolved more towards the use of heavily reinforced 
micropiles with high axial load-carrying capacities.     
 
In the United States, the most common application of 
micropiles has traditionally been underpinning of existing 
structures. For this particular application, micropiles are often 
a more economical alternative. In addition, they may install 
more quickly than other underpinning alternatives within 
confined spaces and low headroom conditions, and produce a 
limited amount of spoils.  
 
More recently, foundation designs of new structures have used 
micropiles as an economical alternative to other foundation 
systems. The authors have designed foundations for several 

new structures using micropiles. One good example is in 
Manhattan, New York City, NY, where micropiles were used 
for foundations of a new building. The micropiles traversed 
the upper layers of old fill containing rubble and debris typical 
of the area, and the deeper hardpan to reach the underlying 
granite. The owner preferred micropiles over driven piles 
since the micropiles could be installed with less disturbance to 
adjacent old structures and could achieve higher working 
capacities.  
 
Another recent example of the application of micropiles for 
new structures is a new electric power generation plant in the 
Piedmont of Virginia. The plant is located in a karst area, 
where depths of significant karst features varied from a few 
feet to over 100 ft. Large interconnected voids and layers of 
very soft clays and silts existed within the formation among 
harder limestone pinnacles and ledges. Micropiles provided a 
suitable foundation alternative since they could be installed 
through the upper karst features into competent rock. A single 
unit price per linear foot could be defined regardless of the 
type of the material traversed. This represented a significant 
advantage over drilled shafts, where rock drilling and concrete 



overages in the karst terrain could easily exceed the 
foundation construction budget. 
 
In this project, the specialty foundation contractor tested three 
micropiles before or right after the start of production pile 
installation. Two of the three piles failed prematurely during 
load testing. This prompted an investigation by the 
geotechnical consultant into the causes of failure, and the 
capacity of the production piles that the contractor had already 
installed. 
 
The geotechnical consultant concluded that the piles failed due 
to a combination of the installation procedures selected by the 
contractor, lack of adequate field observation during 
installation, and the variable karstic conditions existing at the 
site. It was also concluded that, to be able to estimate the 
available capacity of the production piles already installed, a 
significant portion of the piles had to be tested. 
 
After careful consideration of the testing options available, the 
geotechnical consultant decided that the micropiles be 
dynamically tested using the Pile Driving Analyzer (PDA) 
(Smith, 1960; Goble Rausche Likins, 1996). This testing 
program presented several challenges, the most important of 
which was reducing the potential for damage of the production 
micropiles tested. 
 
This paper focuses on the techniques used for PDA testing of 
the micropiles, and presents several interesting conclusions 
regarding the use of PDA as a Quality Control (QC) tool. The 
most important finding is that PDA may be a suitable 
procedure for verifying the capacity of micropiles bonded into 
rock, provided that certain precautions are taken during testing 
to prevent pile damage. 
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Fig. 1. Typical stratigraphy at the site. 
 
 
MICROPILE INSTALLATION 
 
As shown in Fig. 1, each micropile consisted of a 7e inch 
O.D., 0.43-inch thick casing along the unbonded zone.  The 
bonded zone consisted of two central #18, 75-ksi All-Thread 
bars extending from 5 ft above the tip of the casing and into 
the bond zone. The foundation design established the design 
load of the micropiles at 150 kips, a relatively low value for 
micropiles adequately bonded into rock. The specialty 
foundation contractor installed the micropiles by pre-drilling 
with a Down-Hole Hammer (DHH).  The final tip elevation of 
the micropiles was established using a 10-ft penetration 
criterion into the bearing material. Thus, determination of the 
length of the micropile was highly dependent on the operator 
and the field inspector, who should identify continuous rock 
based on the resistance to drilling with the DHH.  

 
 
GEOLOGICAL SETTING 
 
The site is located in the Piedmont Geographic Province in 
north central Virginia. The major site stratigraphy consists of 
karst terrain of the Everona Limestone and its overlying 
residual soils and disintegrated rock. The Everona Limestone 
Formation varies in depth from 20 to 1100 ft and is likely of 
Early Paleozoic Age. 
 
Figure 1 illustrates the general stratigraphy at the site. Surface 
and near surface intervals consist of residual soils composed 
by medium stiff to hard silts and clays. A layer of soft to very 
soft silt underlies the stiff residual soils. This layer is 
commonly referred to as epi-karst. The epi-karst is not a 
continuous layer; instead, the epi-karst appears randomly 
within stiffer layers of soil and rock and in seams of variable 
thickness. The boundary between the epi-karst and the 
underlying limestone is not well defined. Based on the field 
observations, the geotechnical consultant estimated that the 
contractor would likely encounter suitable limestone for 
foundation purposes at depths ranging from 40 to 110 ft. 

 
Once pre-drilling was complete, the casing was spun to the 
bottom of the predrilled hole.  The bond zone was typically 
established by raising the casing 10 ft above the bottom of the 
hole. Simultaneous injection of pressurized air was used 
throughout the process.  Contamination of the bond zone due 
to ingress of soft soil and mud was an important concern. 
 
Before grouting, the hole was probed with a weighted tape and 
tremie-flushed with water to attempt to displace soils and mud 
often detected inside the bond zone during probing.  The 
contractor used a tremie pipe inserted to the bottom of the hole 
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to gravity fill grout, and continued until the grout reached the 
top of the casing.  

 
The compressive axial load tests were conducted in general 
accordance with the procedure for quick load tests described 
in ASTM D1143, and recommendations by the Federal 
Highway Administration (FHWA) presented in the Micropile 
Design and Construction Guidelines Implementation Manual 
(FHWA-SA-97-070).  The test piles were loaded to twice the 
design load. Figure 3 illustrates the results of the compression 
load tests. 

 
During drilling, communication between predrilled holes was 
observed frequently (see Fig. 2). In a number of piles, the 
level of grout inside the casing decreased over time, which 
indicated the existence of open voids along or near the bond 
zone.  
 
  

ig. 3. Static load test results. 

s can be seen in the figure, Micropile TP-1 failed during 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Communication with adjacent holes was often evident 
during drilling. 
 
 
STATIC LOAD TESTING 
 
Initially, the contractor conducted two static load tests in 
sacrificial micropiles. To address the particular design 
characteristics of the project, the contractor conducted 
compression, tension, and lateral load testing on the 
micropiles. To allow for tension testing, the project 
requirements included reinforcing the upper 10 ft of the 
unbonded zone of each micropile with one #13, 150 ksi 
Williams All-Thread bar.  The contractor installed both piles 
following the general procedures described previously. 
 
Micropile TP-1 was drilled to a depth of 39 ft.  The tip of the 
casing was left at a depth of approximately 29 ft. Micropile 
TP-2 was drilled to a depth of approximately 56 ft.  The tip of 
the casing was left at a depth of 46 ft.  During installation of 
this micropile, it was observed that some zones within the 
overburden contained very moist and soft soils, and multiple 
flushing of the casing was necessary to remove these 
sediments from the bond zone, and ensure that the casing was 
set at the proper depth.   
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compression testing under a load of approximately 190 kips 
(125 percent of design load). Micropile TP-2 tested 
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 TESTING RESULTS 

A testing of production micropiles was performed at

 testing was performed using two accelerometers and two 
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he geotechnical consultant concluded that the causes for the 

 was decided that it was necessary to evaluate the capacity of 
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ig. 4. View of the accelerometer and strain gauge used for 

 
 

he top of each production pile was fitted with reinforcing 

successfully.  The gross settlement at the design load of 150 
kips was approximately 0.23 inch.  The gross settlement under 
the maximum test load of 300 kips was approximately 0.5 
inch.  Creep during load application was negligible. 
Interpretation of the elastic rebound data (Gómez et al., 2003) 
during each of the unloading cycles suggested that failure of 
Micropile TP-1 was due to poor bond along the grout-rock 
interface, and that no structural failure of the micropile took 
place.  
 
D
a third load test on a production pile. This pile also failed 
prematurely under a load of approximately 260 kips. This was 
cause for concern requiring the geotechnical consultant to 
investigate the causes for the failure and evaluate the available 
capacity of the production micropiles that the contractor had 
already installed.  
 
T
failure of the two micropiles were contamination of the 
contact between the grout and the rock due to the particular 
subsurface conditions, and the difficulties encountered to 
clean the bond zone by flushing with water. 
 
It
the production piles that had already been installed. Two 
alternatives were available from a practical point of view. 
Statnamic Testing (Middendorp and Van Foeken, 2000) could 
be used to perform several load tests per day on production 
micropiles. Furthermore, this technique had been successfully 
applied to driven piles and drilled shafts. PDA testing was 
another practical alternative. Although PDA testing had been 
used in some cases to predict capacity of drilled shafts in soils, 
the geotechnical consultant could find no records on the use of 
PDA testing for micropiles bonded into rock. There was also a 
concern about potential structural damage of the micropiles 
during each impact. Finally, it was also believed that 
degradation of the micropile bond to the rock might take place 
during PDA testing.  
 
 
P
 
 
P
different locations on micropiles of varying length. Once 22 
production micropiles were tested, the General Contractor 
decided to discontinue further PDA testing.  
 
P
strain gauges (Fig. 4) attached to the casing and close to the 
head of each tested micropile.  The head of each test pile was 
impacted using a Vulcan 01 air hammer (see Fig. 5).  The 
hammer had an energy rating of approximately 15,000 ft-lb. 
This selected hammer was the only low energy hammer that 
was readily available at the time. Although this hammer 
performed well for this application, the authors’ own 
experience and additional input from GRL suggest that 
hydraulic hammers may be more convenient for this 

application since they may allow better control on the energy 
imparted to the piles.  

F
PDA testing. 
 

ig. 5. PDA testing on a production micropile using a VulcanF
01 air hammer. 
 
T
bars for connection with the pile cap. Consequently, a custom 
follower device was fabricated and placed between the 
hammer and the pile head to permit testing without damage to 

Pape



the reinforcement.  Cushioning was provided between the 
head of the pile and the follower device, and consisted of 
approximately 5 to 7 inches of plywood, as illustrated in Fig. 
6. The amount of cushioning needed to prevent damage to the 
piles was determined during calibration testing of Micropiles 
TP-1, TP-2, and TP-3. 
 

 

ig. 6. View of the follower device and cushioning. Note the 
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reinforcing steel of the micropiles. 
 
reinforcing steel of the micropiles. 
 
TT
pile initially with a low energy blow.  Once the first blow was 
applied and the PDA results were examined onscreen, the pile 
was subjected to two or more additional full hammer strokes. 
Striking was discontinued once a PDA capacity of 300 kips or 
more was measured, or if damage to the micropile was 
imminent based on the estimated stresses along the pile. Table 
1 shows a summary of the results of PDA testing.  
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(CAPWAP) analyses were performed on selected piles to 
obtain additional data on pile response to loading and to 
confirm the capacity obtained from PDA testing.  The results 
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2, and TP-3 were consistent with the ultimate capacity values 
determined from the static load tests.  In Micropiles TP-1 and 
TP-3, the PDA capacity was approximately 20 kips higher 
than the static load capacity.  The CAPWAP and PDA results 

for Micropile TP-2 indicated a capacity larger than 300 kips, 
which was consistent with the static load test results.  It is 
noted that the ultimate capacity given by PDA and CAPWAP 
on Micropile TP-2 is consistent with the authors’ experience 
on micropiles bonded into limestone (Cadden et al., 2001). 
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Analyses, and Static Load Testing 
 
Analyses, and Static Load Testing 
 

(ft) (ft) 

     
- .0 43 50 25 

TP-2 57.30 402 495 >300 
TP-3 46.40 281 263 260 

1 50.00 318   
2 44.60 307   
3 46.00 308   
4 64.80 312 399  
5 53.30 198   
6 96.50 272 288  
7 55.50 285   
8 46.00 272 330  
9 81.50 290   

10 45.70 201   
11 41.30 226   
12 74.00 251 290  
13 37.20 319   
14 45.00 314   
15 40.00 312   
16 41.00 199 258  
17 41.90 75 81  
18 41.30 319   
19 37.00 288   
20 57.00 293   
21 41.10 272   
22 69.20 282   

  PDA CAPWAP Static 

TP 1 40 0 2 2 2

 
ased on the comparison between PDA and static load test 

 must be noted that PDA testing of each micropile was 

he results presented in Table 1 are shown graphically in Fig. 

B
results, it was concluded that the dynamic testing, as 
performed, could provide reasonably accurate estimates of 
capacity for the rest of the production micropiles tested. 
 
It
discontinued if a capacity of 300 kips or more was measured. 
Therefore, it must be kept in mind that the capacity of the piles 
that exceed 300 kips in Table 1 may actually be significantly 
greater. In these piles, it is possible that the impact energy 
applied was not sufficient to mobilize the bond strength along 
the bond zone.  It is believed that capacity values of less than 
250 kips are reasonably accurate, as they were typically 
obtained after several blows with increasing energy and after 
some measurable permanent displacement of the micropile.  
 
T
7. It may be noted that there was a number of piles that did not 
reach a capacity of 250 kips. Pile 17 only showed a PDA 
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capacity of 75 kips. During testing of this pile, large 
displacements at the head of the pile were noticeable. 
 
 

Fig. 7. Variability of micropile capacity as determined from 
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similar lengths. This variability in micropile capacity may be 
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Based on the results of the PDA tests, recom
d
micropiles that could be used to adjust the original foundation 
design.  
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Eight micropiles (32 percent) had PDA capacities between 
250 and 300 kips. As mentioned earlier, in some of these piles, 
PDA testing was stopped if there was potential for pile 
damage; therefore, their actual capacity may have been larger. 
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than 250 kips, which corresponds to a factor of safety of 1.7 or 
lower. 
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pile tested lower than this value, with an ultimate capacity 
measured of about 80 kips.  Considering the testing completed 
to date, this could indicate that about five percent of the piles 
would not develop the intended design working capacity 
before geotechnical failure.  Also, 30 to 50 percent of the piles 

did not meet the intended factor of safety of at least two over 
the ultimate capacity.  
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