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ABSTRACT

For the first time in Virginia highway construction history, a consortium of contractors, engineers, and designers proposed an
expansion of the VA-288 highway around the fast-growing western half of Richmond. The design-build project was approved in
December 2000 and construction began April 2001. The project includes constructing approximately 17 miles of new highway with
23 bridges and overpasses. The fast-track, design-build process requires that bridge design and construction be carefully evaluated to
determine the most cost-effective approach. Figure 1 presents the Site Location Map.

In keeping with the design-build process, the bridge foundations were varied depending upon the crossing’s length and the bridge’s
height. Many smaller bridges were supported on pile foundations, while larger structures were designed with a combination of piles
and drilled shafts. To ensure cost-effective foundations, it was desirable to use the highest loading possible without compromising
safety. This required extensive foundation testing using non-destructive techniques.

Testing with the Pile Driving Analyzer (PDA) was proposed for driven-pile foundations to confirm the ultimate pile capacity,
evaluate driving stresses and hammer performance, and establish the driving criteria. PDA testing was performed at all bridge
locations where piles were used. CAPWAP and GRLWEAP analysis were used to establish the pile-driving criteria, which allowed
the most efficient means available for pile installations. Finally, PDA testing and evaluations were used to further evaluate the pile
performance and suitability whenever unusual situations were encountered.

Crosshole Sonic Logging (CSL) and Pile Integrity Tests (PIT) were used to evaluate the overall quality of the constructed shafts for
drilled-shaft foundations. CSL using the Crosshole Analyzer (CHA) was performed on each of the project’s 120 shafts. The shaft
diameter varied from 4.0 to 6.5 feet, with design loads between 600 and more than 2,500 kips. Remedial actions were developed and
implemented to repair the defect as necessary where CSL results indicated poor quality concrete or defects in the shaft.

This paper presents a case history detailing the benefits of the latest techniques for deep-foundation evaluation, various construction
anomalies, and defects encountered while testing the drilled shafts. The paper also discusses the remedial measures developed and
implemented to repair the defects.

DESIGN SUMMARY

The bridge foundations for the VA-288 project were designed
using the same design methodology to maintain continuity in
design, expedite construction, and provide consistency. Most
project bridges were typical road crossings, wherein the
abutments were typically supported on driven H-piles while
the piers were supported on drilled shafts. This system was
implemented in 20 of 23 bridges. Figure 2 presents the plan
and profile for a typical bridge foundation.

Driven Steel H-Piles

The entire project utilized driven 12x53, 50 ksi steel H-piles
for several reasons. Use of the same piles allowed contractors
to utilize one pile-driving hammer for all piles. Scheduling
contractors was more versatile, as they could move their
hammer and piles to any bridge without special orders. For
design, using one pile type served as a quality-control measure
since the designers became familiar with achievable axial and
lateral pile capacities. Finally, the field engineers were able to
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become very familiar with the performance of the pile-driving
hammer, which added to quality control during construction.

Fig. 1. Site location map

The FHWA computer program DRIVEN was used to estimate
the design lengths of the H-piles, based on the bridge loads
provided by the structural engineer. The GRLWEAP
computer program was then used to verify that the piles could
be driven to design depths with the proposed hammer without
damage from high compressive stresses or reaching refusal.
The entire abutment’s overall stability was assessed using the
FB-Pier computer program, which permitted three-

dimensional modeling of the abutment with the piles in their
actual design location and orientation. Based on these
analyses, it was possible to ensure that the pile-supported
abutment could resist the axial and lateral loads.

Some bridge abutments were constructed using Mechanically
Stabilized Earth (MSE) walls; H-piles were driven prior to
constructing the MSE walls around the piles. Therefore,
downdrag forces were induced as a result of the settlement of
the MSE-wall backfill material. These downdrag forces were
incorporated into the design by including them in the ultimate
capacity required during driving.

PDA testing was performed at all bridges on a select number
of piles during construction to verify the design; production
pile lengths and the final pile-driving criteria were developed
based on the PDA testing results.  

Drilled Shafts

The SHAFT computer program developed by Ensoft was used
to design drilled shafts for axial loading based on the pier
loads provided by the structural engineer. The FB-Pier
computer program was used to model drilled-shaft-supported
piers in three dimensions to assess the piers’ overall stability.
Drilled shafts were either socketed into rock or designed as a

Fig. 2. Plan and profile for a typical VA288 bridge
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combination of skin-friction and end-bearing shafts into soils
and weathered rock. The rock sockets were inspected to verify
that cutting spoils were thoroughly cleaned from the sides and
bottom either by hand in dry excavations, or by vacuum in wet
ones.

Groundwater was typically encountered in the overburden
material above the top of rock. This condition created the
likelihood that drilled shaft excavations in the overburden
material would not be capable of free standing. Therefore,
permanent or temporary steel casings were used to maintain
an open hole and facilitate installation of the drilled shafts.
Permanent casings used were typically seated into the top of
rock and included into the shaft design.

Since good construction methods are required to install a
quality drilled shaft below the groundwater table,
demonstration shafts were required to be constructed at each
bridge location. The construction methods used in the
demonstration shafts were assessed and then Crosshole Sonic
Logging (CSL) non-destructive testing was used to verify the
shaft’s final integrity. Once the demonstration shaft was
approved, the constructor proceeded with the installation of
the production shafts.

All drilled shafts for the VA-288 project were inspected to
verify that the same proven techniques used in the
demonstration shafts were maintained for the remainder of the
shafts. CSL testing was also used in all drilled shafts as a final
quality-control measure.

Bridge piers for the VA-288 bridge in question were
supported by 48-inch diameter drilled shafts constructed with
permanent casings seated into rock with rock sockets ranging
from 7 to 18 feet in length. Drilled shafts were designed for a
562-kip capacity and were constructed with 4,350-psi
compressive-strength concrete. Due to limited site access and
shaft excavations filling with water, concrete was placed by a
pump truck with a tremie extension to deliver concrete to the
bottom of the shaft.

Figure 3 presents a typical shaft design at this bridge.

QUALITY CONTROL INSPECTION

As discussed above, drilled shaft foundations were determined
most suitable for the larger bridge structures. In keeping with
good general foundation design procedures as well as VDOT
practices, post-construction evaluation of the drilled shafts
was considered desirable. Such inspections allowed for the
design loads and therefore the number of drilled shafts per
bridge bent to be optimized for the soil conditions at each
bridge location. Fig. 3. Typical Drilled Shaft Design Details
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Pile Integrity Testing (PIT) and Crosshole Sonic Logging
(CSL) were considered for the post-construction evaluations
of the drilled shafts. PIT testing is performed by striking the
shaft top with a small hand-held hammer and measuring the
reflected stress waves using a small accelerometer mounted at
the shaft top. The reflected stress wave will be influenced by
changes in the cross-sectional area or concrete modulus of the
shaft. Where the shaft diameter is decreased or the concrete
modulus reduced, the reflected wave will increase in velocity.
Since the design and construction of the drilled shafts for this
project contained planned changes in cross-section and  the
length of shafts was expected to be relatively short, it was
determined that PIT testing of these shafts would yield results
that were difficult to interpret. In addition, all of the designed
shafts would include a significant amount of end-bearing
resistance and the toe condition was considered critical for
evaluation. Using PIT testing to determine the toe conditions
can also be very difficult. For these reasons, CSL testing was
selected to provide the post-construction evaluation for all
shafts and PIT testing would be performed only where
unusual conditions or results were obtained from the CSL
testing or from visual shaft inspection.

Crosshole Sonic Logging (CSL) is performed in drilled shafts
once the shaft has been drilled and concrete poured. CSL
testing requires that access tubes be tied to the interior of the
shaft reinforcing steel at selected intervals. Usually one tube
per foot diameter is used to provide sufficient coverage of the
shaft cross-section. For the VA-288 project, shafts were
provided with 4 to 6 CSL access tubes with shaft diameters
ranging from 4 to 6.5 feet. The access tubes are filled with
water either just before or after concrete placement to prevent
debonding between the access tube and shaft concrete, as well
as to provide a transmission medium for the ultrasonic signal.
CSL testing may be performed after an appropriate curing
time, usually 3 to 7 days.

CSL testing is conducted by lowering transmitter and receiver
probes down separate tubes and raising them from the shaft
bottom to the top of the access tubes. The transmitter probe
emits an ultrasonic signal across the shaft concrete to the
receiver probe signal at 2-inch increments along the tubes.
The probes are maintained at the same elevation to maintain a
constant distance between the sensors throughout the test. A
log of the shaft is then produced for each pair of access tubes.
Typically, testing is performed for all perimeter tube pairs and
the major diagonals to develop shaft profiles. Therefore, six
profiles are performed for a shaft with four access tubes to
fully assess the shaft’s integrity. Figure 4 shows the typical
CSL testing setup using the Crosshole Analyzer (CHA)
manufactured by Pile Dynamics, Inc.

CSL results are plotted for each profile performed. The results
include the historical “waterfall diagram,” which presents
results in a binary fashion where positive signal components
are displayed and negative or unreceived records are not. The
waterfall diagram is an intuitively clear representation of

concrete quality over depth, but does not provide sufficient
detailed information where marginal results are obtained. For
these situations, the first arrival time (FAT) and relative
signal-energy plots are more informative. The FAT plot is a
single line plot showing the arrival time of the CSL signal
over the length of the shaft tested. For the CHA system the
FAT may be selected either manually or by setting absolute
and relative thresholds. The relative threshold is relative to the
maximum signal received for the individual profile.

The signal strength can also be used to analyze CSL test data
to evaluate shaft integrity. The signal strength is evaluated by
digital integration over time of the absolute value of the
signal.The duration of the signal integration is typically
around 10 to 20 samples. The result of this integration is
called the signal energy. There are no absolute values of
energy that can be used for concrete quality assessment;
however, a local relative reduction of energy by more than a
factor of 10 usually indicates a serious reduction in concrete
quality.

CHA

Tubes (water filled)
Concrete
Transmitter (emitter)
Wave Direction

Transmitter (receiver)

Encoder Wheels 
(measures displacement)

Fig. 4. Typical crosshole setup

CSL TESTING RESULTS

As stated above, all the drilled shafts for the VA-288 project
were subjected to post-construction quality control testing
using the Crosshole Analyzer (CHA) manufactured by Pile
Dynamics, Inc. Considering that the project consisted of
approximately 150 drilled shafts, the amount of testing was
considerable. In order to make CSL testing more cost-
efficient, the testing was usually only performed when a large
number of shafts were ready to be tested. As such, the CSL
testing took place anywhere between approximately 5 and 30
days after completion of the drilled shafts. Since only steel
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tubing was used for the access tubes, the duration between
concrete placement and CSL testing could be extended
beyond the 10- to 14-day limit that is often specified due to
debonding concerns associated with the use of PVC tubing.

CSL results indicated that the vast majority of the drilled
shafts were of high quality and integrity. However,
approximately 10 percent of the drilled shafts indicated some
sort of problem with the shaft concrete. Of these, two drilled
shafts indicated a significant defect in the middle. Figure 5
presents the CSL results for one profile selected from one of
these two shafts. As the figure indicates, a complete loss of
the CSL signal was indicated at a depth between 6.5 and 8
feet. Although only one profile is presented here, the results
for the other five profiles performed for this shaft were nearly
identical. Such results clearly demonstrate a significant
deficiency in the drill shaft concrete between these depths.

GRL Engineers, Inc.
VA-288 Project
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Fig. 5. CSL results for shaft defect in middle of shaft

In addition to the above results, a defect was indicated near
the shaft bottom. Approximately four shafts at one bridge
location were identified to have CSL results indicating a so-
called “soft toe.” Such results are indicated by delayed signal-
arrival time or loss of signal at the shaft bottom. Figure 6
illustrates the CSL results from one profile of one of these
shafts. As indicated in the figure the CSL signal arrival time is
first delayed and then completely lost beginning
approximately 2 feet above the shaft bottom. Variations in the
results for the four shafts indicated that this “soft toe”
condition only existed in two or three of the six profiles.
Finally, approximately nine shafts were identified as having a

significantly lower CSL signal energy and/or a minor delay in
the CSL signal arrival time near the shaft top.

Fig. 6. CSL results for shaft defect at shaft toe

Figure 7 presents the results for one of these shafts. As
indicated the CSL energy is clearly reduced over the top 3 feet
of the shaft. In addition, the CSL signal arrival time is slightly
delayed over portions of this area. Such results appear to
indicate a variation in concrete quality between the upper
shaft concrete and that present over the lower portion of the
shaft. In general, results such as these were encountered only
for the major diagonal profiles and where shaft diameters of 6
feet or greater were used. As such, it appears that the results
may have resulted from the partial debonding between the
steel access tubes and the shaft concrete. Debonding is
described as a separation between the shaft concrete and the
access tube resulting in a small air gap. Such a gap will
prevent or degrade the transmission of the ultrasonic signal
from one access tube to the next. Where CSL results indicated
this condition, either PIT testing or core samples were
collected from the shaft top to further evaluate the shaft
integrity. Unconfined compressive tests were performed on
core samples obtained from the shaft top to assess the concrete
strength.

GRL Engineers, Inc.
VA-288 Project

PIER-3, SHAFT#1 - RT
1-3 (F2,3)
Length=30.00 feet
Spacing=27.5 in
Gain=126191
10/26/01 12:28

0
5

1
0

1
5

2
0

2
5

3
0

D
e
p
th

 (
fe

e
t)

0 .1 .2 .3 .4
Arrival (ms)

lowhigh
Energy (log)

PIER-3, SHAFT#1 - RT
1-3
Length=30.00 feet
Spacing=27.5 in
Gain=126191 (x3)
10/26/01 12:28

29.65

0
5

1
0

1
5

2
0

2
5

3
0

D
e
p
th

 (
fe

e
t)

.15 .2 .25 .3 .35 .4 .45 .5 .55 .6
Time (ms)

  1 / 1Pile  D ynam ics ,  I nc.
C ros s -H ole Analyzer 

GRL Engineers, Inc.
VA-288 Project

PIER-3, SHAFT#1 - RT
1-3 (F2,3)
Length=30.00 feet
Spacing=27.5 in
Gain=126191
10/26/01 12:28

0
5

1
0

1
5

2
0

2
5

3
0

D
e
p
th

 (
fe

e
t)

0 .1 .2 .3 .4
Arrival (ms)

lowhigh
Energy (log)

PIER-3, SHAFT#1 - RT
1-3
Length=30.00 feet
Spacing=27.5 in
Gain=126191 (x3)
10/26/01 12:28

29.65

0
5

1
0

1
5

2
0

2
5

3
0

D
e
p
th

 (
fe

e
t)

.15 .2 .25 .3 .35 .4 .45 .5 .55 .6
Time (ms)

  1 / 1Pile  D ynam ics ,  I nc.
C ros s -H ole Analyzer 



Paper No. 9.08 6

Fig. 7. CSL results for shaft with poor quality concrete at top

CONFIRMATION CORING AND POTENTIAL CAUSES
OF SHAFT DEFECTS

Several shafts were selected to be cored to confirm the results
of the CSL testing. Coring was performed using an NX-size
diamond core bit to retrieve samples for testing in the lab.
Typically, three cores were drilled to 3 feet past the defective
zone as identified from the CSL testing. Unconfined
compression tests were performed on the core samples and the
results are summarized in Table 1. The results indicate that the
concrete strength in the defective zones varied between
661 and 1,337 psi. The design concrete strength was
4,350 psi. These test results confirmed the CSL test finding.
The shaft’s vertical and lateral capacity were reanalyzed to
assess the shaft capacity using the lowered concrete strength.
The results indicated that the shaft capacity would not be
adequate to support the structural loads imposed, with an
adequate safety factor. Therefore, the shaft defects had to be
repaired.

Table 1. Unconfined Compression Test Results

Depth
(feet)

Unconfined Compressive Strength
(psi)

<15 5828
15 to 16 1178
15 to 16 661
15 to 16 1337

The causes of the defects were investigated to avoid the
installation of additional defective shafts during the
completion of the bridge foundations. The potential causes of
the shaft defects were categorized by the location of the
defects in the shafts:

1. At the top of the shafts
2. At the middle of the shafts
3. At the bottom of the shafts

Defects at the top of the shaft were caused either by defective
concrete or by soil/spoil contamination that may not have been
thoroughly removed during construction. Inadequate over-
pouring may have been the cause or inadequate soil/spoil
removal. Although, the testing performed on concrete samples
indicated the concrete strength exceeded the design strength
(4,350 psi), the concrete supplier was changed since large
gravel were identified during the concrete placement which
caused the pump lines to clog and interrupt the concrete
placement.

A single shaft had a most puzzling defect at the middle, since
the shaft was installed using steel casing to the top of rock.
The defect was encountered approximately 3 feet above the
top of rock and within the steel casing. Installation records
indicate that the defect was encountered at a depth that
coincided with the end of pumping from one concrete truck
and the start of pumping from another. Two possible causes
were debated; the first was defective concrete and the second
was from pulling the pump line too close to the top of
concrete. Typically 5 to 7 feet of concrete head are required to
maintain the concrete flowing without being contaminated
with the spoil floating on top of the concrete.

Inadequate cleaning of the bottom most likely caused the shaft
defects encountered at the bottom of the shafts. The rock and
the weathered rock are clay based and when they were mixed
with the water the fines were suspended in the water. If
enough time elapsed from completion of the drilling to the
concrete placement, the suspended sediments will settle to the
bottom of the shaft causing the bottom to be soft as shown in
Figure 7.

REMEDIAL ACTIONS TO FIX THE DEFECTIVE SHAFTS

The remediation program is summarized as follows:

1. Drill six 4-inch diameter holes in the defective shafts
using air-track drilling equipment. No samples were
recovered, however the drillers were able to indicate
that the bottom of the shafts contained softer
material.

2. Drilling depths extended approximately 1-foot
beyond the bottom of the defective zone as identified
from the CSL testing.

GRL Engineers, Inc.
VA-288 Project
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3. The drill holes served as access points for cleaning
and removing material from the deficient zones.

4. Upon the completion of the drilling, each core hole
was water blasted at 10,000 psi to break up inferior
concrete.

5. Cuttings and concrete debris were then vacuumed
from the deficient zone using a vacuum truck.

6. The hole was inspected using a microcamera to
ensure that the defective concrete was removed.
Figure 8 shows a picture of intact concrete while
Figure 9 shows a picture of the defective zones.

7. A 1.5-inch diameter steel pipe was installed through
one of the holes to serve as a grout port.

8. The voids were pressure grouted through the grout
port. The pressure was limited to 200 psi.

9. Seven days after the completion of the grout
operation, the defective shafts were retested using
CSL testing, the results of which appear in Figure 10.

Fig. 8. Picture of intact concrete with microcamera

Fig. 9. Picture of defective concrete with microcamera

Fig. 10. CSL results for repaired shaft

CONCLUSIONS

•  Using CSL testing to provide quality control is a valuable
tool and should especially be implemented if there is no
redundancy in the foundation system.

•  It is crucial to have a qualified testing agency interpret the
test results. The results will have to be evaluated in light
of the applied loads, foundation system, redundancy, and
many other factors.

•  During the installation of the drilled shafts, special
attention should be given to the cleaning of the shaft
bottom and concrete placement.

•  During the placement of the concrete, if the pumplines are
pulled too close to the top of the concrete, it may be more
cost effective to remove the placed concrete, clean the
shaft and restart the concrete placement, than having to
fix defective drilled shafts.

•  Fixing drilled shafts is possible but costly.
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