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CHAPTER I

Lumped Mass Analysis

1.1 Numerical Procedure

For this analysis, the pile is modeled as a series of discrete
masses and springs as shown in Figure 1.1. The problem is to find
the displacements during dynamic loading of all elements. Given
are ejther the force acting on the top element or its acceleration,
both as a function of time, and various passive force boundary
conditions for each element. These passive forces can be regarded
as functions of displacement and velocity. In Chapter V a study is
presented on the physical model of resistance used, and its Timitations.

The piles encountered during this project were, with only a
few exceptions, steel pipes of constant cross section. The computer
program, therefore, was set up for uniform cross sections and steel
elastic properties. However, the changes fo a more general pile,
for example tapered piles or steel piles filled with concrete, could
be easily accomplished and examples of this modification are given
in Reference 1.

Consider Figure 1.1. A continuous pile is replaced by n mass
elements and n-1 interconnecting springs. The boundary conditions,
either acceleration or force, are available from measurements at
the middle of the top element. Then stiffnesses

_ EA
k_m-fn (]n‘l)




can be assigned to all the springs, and masses
M= LA (1.2
= — Alp .2)

to all elements,

Some resistance force, rs i acts on the 1th element at time

H

tj = jeat, Displacements, velocities, and accelerations of element

i at time t. are u, ., U. . and u, ., respectively. The top element
i i,4° “i,3 i,j° P Y P

is acted upon by an active force Fj' Velocity and displacement are

obtained from the piecewise linear acceleration using:
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and
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Here a comparison with the method developed by Newmark (2) can

be made. Instead of Equation 1.4, Newmark proposed the following

equation for computing the displacement

U, . = + U

'l . P e 9
i3 " Y50 st + (5 - 8) At? + gu. LAt

“i,3-1 i,
(1.5)

i,§-1

Comparing this equation with Equation 1.4 it can be observed that R
is the coefficient obtained by twice integrating a Tinearly increasing
acceleration (e.q. U= at+u = %-atE).

The force in the i-th spring at time tj is
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Applying Newton's Second Law to the i-th element, one obtains at a

given time j:
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Then Uigy 0 Uy and "5 (a function of uj and ui,j) will be

unknown in this equation. Therefore, Equation 1.4 is applied on both

Ui+1,j and Us 5 to obtain:
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Now, the only unknown left is Gi+1 j if we determine i by using
Ui 57 instead of Uy ; and Ui 59 At instead of Uy 4 Except for the
top and bottom element Equation 1.7 can be used to compute u. ..

1,3

For the first prediction ai+] i is set to zero. For any later
5

iteration step U, i can be used as obtained in the previous

i+,

calculation, while r j is always computed using the previous results
£}

for uy and ﬁi 50 Both u, . and Gi . are readily obtained using

N sd

L] L]

Fquations 1.3 and 1.4.




For the n-th element, i.e. the pile bottom, 1.7 reduces to:

- T
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where L. ; is the only unknown.

At the pile top force Fj may be prescribed and the acceleration

computed. Then

+ 1
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where the only unknown is ﬂz j since a passive reaction is not assumed
to act on the top element,
If the acceleration 31 j is given as a boundary conditien then

the force can be calculated from:

.+ k[~u
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where again Ez 5 can be set to zero for the first step and equal to

the previously calculated value for all later iteration steps.



Convergence will be reached when the relative difference between
successive results is smaller than a chosen number e. (The influence
of the magnitude e will be studied in the next section of this
Chapter). It is possible to compare displacements, velocities or
accelerations. Certainly acceleration will be the most sensitive
variable but it was found that a velocity controlled iteration yields
good resuits. In the case of an acceleration input condition on top
of the pile, a check is performed on the calculated top force. Thus,

the convergence criterion which must be satisfied for all j can be

written as
(G, W) = (U, L)
Lynew d.old .. 5-1.2,.., (1.11)
(ui,j)new
where Uy ; might be replaced by Fj‘

The frequency of the top boundary condition is an important
factor in the choice of the time increment, At. It is important
that no extreme values of these functions are missed, If At is
small enough, errors will be negligible (see Fig. 1.4). It is then
possible to approximate the continuous boundary function by a
sequence of straight lines. Consequently, it should be sufficiently
accurate to express accelerations of pile elements as a sequence of
straight lines as well. This leads to velocities and displacements

being polynomials of second and third order, respectively.




1.2 Analysis Parameter Study

1.2.%7 Humber of Elements

The numerical method chosen can, at best, be expected to give
the soluticn for the pile modeled as a system with n degrees of
freedom, The question, therefore, is how many elements are necessary
to accurately represent the continuous pile., For purposes of
comparison, using the same acceleration input, time interval and
convergence critevion, a pile without reaction forces was analyzed
divided into 5, 10 and 20 elements. The exact solution for the
continuous pile is easily obtained for this case (see Chapter I1I)
and is given together with the lumped mass solution in Figure 1.2,

It should be noted that the actual pile length is not involved in this
compariscn because it is not a factor in the number of elements
needed, As can be seen, while 5 gTements represent a poor model,

the 10 element system is already a good approximation to the actual
solution and 20 elements give noticeable differences only where there
are rapid changes of force. It can be deduced that 20 elements will
yield a very accurate solution while 10 elements give good

qualitative results.

1.2.2 Time Increfent

Once the number of elements has been determined the choice of
a time increment is constrained. The reascon for this is the occurrence
of instability of solution whenever the distance traveled by the

stress wave in one time increment is constrained. Investigations



into this phenomenon have been undertaken and are discussed by

Crandall (3). The suggested 1imit imposed on At is

st < Lc (1.12,a)
which becomes

At < i (1.12,b)

using c? < E/p.

Now, introducing

=
)

o = L (1.13)

=

o+
-

9]

as used by Smith (1), ¢ > 1 will always yield a stable solution.
Figure 1.3 shows an exact solution and three other solutions using
¢ = 1/2 (unstable}, ¢ = 1 and ¢ = 2. A1l three solutions were
obtained for n = 20. The differences between ¢ = 1 and ¢ = 2 are
very small and can be accounted for by observing that the input
condition is not exactly the same when more time increments are
placed on the sequence of straight lines. Figure 1.4 shows what
happens to the acceleration input data when used with different

lengths of time increment.




1.2.3 Convergence Criterion

Various calculations were performed using different and also
calculations without any iteration. It is seen in Figure 1.5 that,
whenever enough elements are chosen, say greater than 10, a number

.1 will be sufficient and that the iteration starts to improve
the solution after 2L/c. These comparisons, however, might yield
quite different results when the solutions is carried forward over

a longer time interval.

1.2.4 Computation Time

In order to draw conclusions about the accuracy and feasibility
of the lumped mass analysis method, the computation time has to be
considered. The calculations listed in Table 1.1 were performed on
a Univac 1108 Computer. The program was written in Fortran V. The
computer time in seconds is an approximation because time is listed
only in half seconds. However, it can be seen that solutions using
less than 3 seconds are not satisfactory. Using 30 elements did not
give substantial improvement while the computation time increase was
considerable (9.5 seconds!). The use of 20 elements together with
¢ =1 (at = .227 milliseconds in this case) gave a satisfactory
result and used only 3 seconds. The result could not be much improved
by halving the time increment which resulted in almost doubTling the
computation time. Note that the only satisfactory result for a pure
prediction analysis took é,S seconds while the result between 2L/c and
4L/c is still quite erroneous as compared to the iterative computation on ¥1ne:

7 which took only 3 seconds. The method of analysis has the advantage of
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CHAPTER 1T

Static Analysis

2.1 Introduction

The resistance parameters obtained from dynamic analysis make
possible the computation of a load deformation curve to compare to
a static load test. The soil parametars describe the shear resistance
at the pile soil interface as a function of deformation. Actually,
such an analysis should take into account the deformations of
underlying soil strata. However, this would require a much better
knowledge of the static soil behavior than can possibly be obtained
from dynamic measurements. The analysis described below will give
results which can be used for correlating dynamic predictions to
static measurement and it will provide a valuable tool to obtain
an estimate on the pile deformations to be expected. First, the pile
is dividec into n elements as it was done for the purpose of dynamic
analysis in Chapter I. The static soil resistance acting on the 1ith
element is assumed to be directly dependent on the absolute pile
displacement and is modeled again by an elastic plastic spring with
stiffness ksi = So,i/qi’ where So,i is the ultimate soil resistance
and 9; the quake of the shear resistance at the element.

Under these assumptidns the load versus deformation curve of
the pile will be a piecewise linear function. Once all displacements

are larger than the quake the ultimate bearing capacity has been

10
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reached and no more load increase can be obtained.

2 2 Mathematical Formulation

Consider the i-th element in Figure 1.1. Using the same

notations as in Chapter I its equilibrium condition can be written

g5:

* (2.1)

where

e

U for u; < g

q; for u; > gy

Thus for u; < q; Equation 2.1 can be written as

-Ug gt (2 + ksi/k)ui - Ugq = 0 (2.2a)
and after the displacement has exceeded the quake
ksi
U; oy F2u = Uy T T O {2.2b)

For the first element on which no reaction forces were assumed to

act (Chapter III) the equilibrium equation becomes
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where Fto is the Toad applied at the top of the pile. At the tip

P

Uyt u (1 +k/k) = 0 for u <, (2.4a)

n-1
or

U, tu = (ksi/k)qn otherwise, (2.4b)

Thus, a system of n equations with n unknowns is obtained which has
to be solved for any interval between two consecutive yields of
shear resistances. Since shear resistances are acting on n-1 elements
this means solving n-1 times,
The procedure foliowed here uses the same approach as would

be followed in a static load test. First some load Fto is applied

p
on the top and then the deflections u; are calculated for all
elements, i = 1, 2,..., n. The next step is to determine which of
the resistance forces will reach the quake first. This can be done
by investigating the ratios “i/qi‘ If their maximum happens to be
uj/qj then the first sprihg to yield will be located at the j-th
element. Because of linearity, the displacements for the instant

when the j-th ultimate shear is reached can be calculated from

proportionality

q.
Us o = U, » El . (2.5)
J
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and the force on top of the pile is

q.
F 7;1 (2.6)

top,d ~ " top T,

In this way the first point of the lcad deflection curve is obtained
when plotting Ftop,j Versus u; ..

A new system of equations has to be set up now by writing the
j-th equation using eq. 2.2b instead of 2.2a. The new system can
F

be solved when using F + AF where AF is an arbitrary

top ' top,]

load increase and following the same routine as described above.

In this way n-1 systems of linear equation each having n
unknowns and n equations have to be solved.which can be done
conveniently by means of iteration always using the previous result
as a starting point.

Results from this analysis were used and are demonstrated in
Chapter III of Volume 1 for correlating soil resistance predictions

with results from actual static load tests.



CHAPTER I1I

Wave Propagation in a Pile Under Impact

3.1 Force and Velocity Relation in a Stress Wave

If u(x,t) is the displacement of 1 particle in a uniform and
é]astic rod at distance x from some fixed coordinate origin at time
t, then the governing differential equation, the so-called wave

eguation, is

2 2
ZU _ L228%u (3.1)
at? ax?

where c? = E/p, Young's Modulus and mass density of the pile material

are £ and p, respectively, The general sotution of the equation is

u(x,t) = f(x + ct) + g(x - ct) (3.2)

which is easily checked by back substitution. The general solution
can be interpreted physically by giving t a fixed value t;. Then
u is a function of x only and can be split into two components:

f{x + ct;) and g(x - ct;). At a later time to

1l

X+ cty) = F(x + c(ty - t1) + cty) and

i

g{x ~ cty) = g{x - clty - t;) - cty).

If, therefore, a distance c(t; - t1) is subtracted from x then the

14
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station is found at which f has the value at time t, that it had
at x at time t;; g will have the same value at x + c(t, - t;) at
time t, which it had at time t; at x. In other words, if f and g
are considered to be displacement waves then f travels in the
negative x-direction and g travels in the positive x-direction,
both having speed c.

Differentiating Equation 3.2 with respect to time leads to an

expression for the velocity v(x,t) of a particle

vix,t) = c(2ftal . 28 (3.3)

where n = x + ¢t and y = x - ¢t. Equation 3.3 can be written as
vix,t) = vf(x + ¢ct) + vq(x - ¢t} (3.4)

thus, v can also be described by two waves Ve and vg which travel
in opposite directions.

Now, suppose that the shape of the functions f and g and, therefore,
u{x,t) is known at a certain time, t. Then the strain, ¢, is obtained

by differentiating u(x,t) with respect to x

2= () = (fx + ct) + glx - ct))
ar
‘g(xmt) o afin) . _gly) (3.5)
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The advantage of using derivatives with respect to n or u becomes
apparent since these derivatives express the behavior of the derivative
with respect to both x and t. Using the rod cross section area A

and taking compressive forces positive, the force F(x,t) in the wave

can be ca]cu]ated.
F(x,t) = {AE/c) (—vf(x + ct) + vg(x - ¢ct) (3.6)

Thus, there exists a simple relation between particle velocity and force
in a stress wave, the force being proportional to the velocity by a
factor AE/c. The force will be compressive when the velocities of
particles and wave propagation have the same direction and it will

be a tension force otherwise.

3.2 Boundary Conditions

S0 far, only the homogeneous differential equation has been
considered and nothing has been said about boundary conditions or
external forces. Since the differential equation is linear, super-
position is valid, so that a case of complicated boundary conditions
can be split into several basic types of easily solvable problems,
If the boundary cornditions were noniinear then 3 result can be obtained
by assuming piecewise Tinear boundary conditions and superimposing
their effects. A wave reaching the end of the rod might encounter
either prescribed force or displacement conditiens. This problem
can be split into the case where the wave travels in a rod with
homogeneous, i.e. zero force or displacement, boundary conditions

plus the case where no wave is present with non zero end forces
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or displacements. The case where external forces are acting along
the rod may alsc be treated separately and then superimposed on to
the homogeneous solution. Prescribed displacements have to be
considered at the end of the rod only. Therefore, four basic
conditions must be treated
{i) Wave apprcachirg & free end,
(ii} Wave approaching a fixed end,
(141} Prescribed force acting at a point along the rod,
(iv) Prescribed displacements at the end of the rod.
Case (i) Wave in a Rod with Free End
Consider Figure 3.1 where on the left a wave g(x - ct) is
shown approaching the free end {(x = L) of the rod. Connected to
it on the fight is an imaginary rod a1ong'which flx + ct) travels

in negative x-direction chosen so

f(2L - x + ct) = g(x - ct) (3.7)
Therefore,
3X ax

Both waves will arrive at x = L at the same time. From superposition

the displacement and strain can be calculated

2f{L + ct)

1}
Hi

u(L,t) = f(L + ct) + gk - ct)

fL+ct) gl +et) 4

E(L,t) " X
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Thus the boundary condition of a free end is satisfied. The wave
f(x + ct) will now travel in negative x-direction through the rod.
It is called a ref1éction wave. As compared to the initiating wave
g(x - ct) it will cause displacements of the same sign but forces
of opposite sign. The displacement at the free end will be twice
that of the approaching wave.
Case (ii) Wave Approaching a Fixed End

An imaginary rod is again used for the case where the
displacement of the end of a rod must be zero. In this case,
however, the wave traveling in the negative x-direction is chosen

so that
f{2L - x + ¢t) = -g(x - ct) {3.8)

and, therefore, %;—= %%3 As a result of superposition the force
at the fixed end will be doubled while the displacements cancel.

The reflection wave Q111 propagate displacements of opposite direction
but forces of the same sign as the initiating wave.

Case (ii1) Prescribed Force Acting at a Point Along the Rod

If a force is appiied at x = x* along the rod then the

continuity condition requires
* =
u(x*) ,t) = ulovg,t) (3.9)

where x*L and x*R are on the left and the right side of the loaded
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cross section, respectively (Figure 3.2}, This can also be

written in terms of velocity

au(x*L,t) _ au(x*R,t)
ot 3t

(3.10)

Also the equilibrium condition has to be satisfied, i.e.

* *
au{x L,t) sulx R,t)

AE( ax 3X

)= Fplx*,t) (3.11)

where FA(x*,t) is the applied force at x = x* and time t. Now
recalling Equations 3.3 and 3.5, Equations 3.70 and 3.11 can be

satisfied by choosing

afTEU) X = X*¥ 2 ;g:j) ¥ = & %FA(X*,t)/EA (3.12)
1
- R
and
8 (n) _ agly) -
an X = XE T X =XL =0 (3.12)

Substituting these two conditions in Equation 32,10 leads to
1
clgf p (%, £)/AE + 0] = [0 + TF (%, £) /AE] (3.13)

thus, satisfying the continuity condition.
Similarly it proves that the equilibrium condition is satisfied.

Figure 3.2 shows that both waves carry a force of one half of
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the applied force while the velocities the same in both waves having

the same direction as the applied force and magnitude %FA(X*,t)c/EA.
The case where the force is acting at the end of the rod can

be deduced since one of the half-waves is immediately reflected and

superimposed on the other. Therefore, a wave will travel away from

the end with particle velocity

QEL%%31-= CFA(t - (L~ x}/c) (3.14)
and strain
e(x,t) = FA(t - (L‘- x)/c)/AE (3.15)

Case (iv) Prescribed Displacements at the End of the Rod

The case of a prescribed displacement condition at a point alohg
the rod will not be discussed since this is equivalent to a reod of
shorter length with prescribed end displacement. A displacement
prescribed at the end of a rod is equivalent to a prescribed velocity:
VA(L,t). From the force velocity proportionality relation this can
be considered a force condition where the force has to be chosen as

FA(L,t) = VA(L,t)EA/c. Thus Gase (iii) can be applied.

3.3 Superposition of Waves

In this section certain special cases will be treated where the

findings of Secticon 3.2 are applied. These special cases will be
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needed in treating problems where external forces act along the
pile together with prescribed end conditions.
(i) Free Pile Under Known Velocity at the Top

Suppose a velocity, VA(t), which is zero for t < 0 is imposed
on the top of a pile of length, L. It is desired to know the top
force necessary to maintain this velocity when no other forces are
acting along the pile.

As Tong as the wave created by VA(t) has not yet reached the

free end (i.e. for t L/c) a pile particle at a point has velocity

vi(t) = VA(t - xi/c)

At time t = L/c the wave reaches the free end of the pile and
case (i) of Section 3.2 applies. Thus, a reflection wave having
velocities of the same sign and forces of opposite signs will travel

back up the pile. The velocity at a station x = Xx; becomes

vi(t) = VA(t - mw—?;m-—) + VA(t - -EJ (3.16)
2L+ x.i
for t E.";“Tf"”' .

A new reflection wave will be generated when this "up"-traveling wave
reaches the top since here the velocity is prescribed. Case (i1) of
Section 2 describes this fixed end situation. This second reflection
requires a force; therefore, the proportionality between applied

velocity and top forces will no longer hold. The force at the top of
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the free pile may be denoted by Ff(t); then for t < 2L/c
Ff(t) = VA(t)EA/C
and for 2L/c < t<dl/c

f(t) = [VA(t) - ZVA(t - 2L/c)JEA/ ¢ (3.17)

At a time t = 3L/c the wave will again be reflected at the bottom end.
(It had been reflected at the top at time 2L/c). At time t = 4L/c

the wave has to be reflected again at the top but this time it has the

opposite stress due to the previous reflection at tne free end. 1In

general for, g%“'i,t_i g%(r + 1)
EA 4 . 2L ]
Fe(t) = =y, (t) + 27 vt - J == (-1)97 (3.18)

J=1

where r = 0,1,2,..., refers to the time interval considered. Equation
3.18 gives the exact solution for a given top velecity and no reaction
forces. This equation can be used as a check on the tumped mass
analysis. Comparative results of this kind are shown in Chapter I of
this volume. Furthermore, if this solution is subtracted from the
measured force, the Measured Delta curve is obtained as defined in
Chapter II of tﬁe first volume.

Equation 3.16 gives an expression for the velocity at some

point in the pile for times t < (2L + xi)/c. The eguation can be
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2yt X, : 2L(r.+,1).+,xi

< <
c -'"'t c

extended for times

r :
vi(t) = jzo(-1)J[VA(t - (23l + x1e) = vyl - LG 1)2L

- Xi}/c)] (3.19)

(i1) External Force Acting on a Pile with Fixed Top and Free Bottom
The force denoted by Ri(t), is assumed to act upwards. If it is

acting at x = X, then the results of Section 3.2 case (iii) apply.

Thus, two waves are induced traveling in opposite directions and having

particle velocities {(at x = ¥y and time t)
DR
vplt) = - zep Ry(t)
The forces in the ware are
Ft) =2 1/2R(t)

j.e. a compression in the upwards and tension in the downwards
traveling wave. The reaction force Ftop(t) on the fixed top of the
pile due to this velocity will be a compression force of twice the
magnitude of the force in the wave (Case (ii) Section 3.2). The
upwards traveling wave will arrive at the top at a time xi/c after

it is applied, hence
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Fo..(t) = Ri(t - xi/c) (3.20)

top
which is valid for a time as long as it takes the initially downwards
traveling wave to reach the top after reflection at the bottom. This
reflection at the free bottom end causes the initially downwards
traveling wave to change the sign in force (Case (i) Section 3.2)
and therefore, is also a compression wave after reflection. Reaching
the top at a time (2L - xi)/c after it was generated by the resistance
force, this wave also will produce twice the force at the top which
it was propagating. The next wave to arrive at the top will be the
initially upwards traveling wave, its sign will be converted so that
a tension wave arrives.

This way the reaction at the fixed pile top due to Ri(t) can

be calculated for 0 < t < 4l/c

xi 2L - x1 2L+ xi
Froplt) = Ry(t - =) + Ry(t - ——) - Ry(t - ———)
- Ri(t - ~ﬂ—7;—~—) (3.21)

for later times it can be observed that all the waves which arrived
at a time t; at the top have in the mean time changed their sign
twice thus arriving again with the same sign at a time i, + 4L/c.
This result can be expected since a Ei1e of length L has a Towest
natural frequency of ¢/4L, inferring that in the absence of external

forces a harmonic behavior can be observed, Therefore, for times
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rdbjc < t<(r+ 1)4L/¢

r X, . 2L - X,
- i AL i AL
2L+ X. X
i AL i . 4.
+ Ri(t - o T J—Ej - Ryt + — - (J+ T)"E)]
(3.22)

and r = 0,1,2...,n indicates the time interval considered.

The problem of obtaining the particle velocities at a point x = X
when the load, Ri(t) is acting at x = X, is somewhat more complicated.
1t can be split in two parts, first considering the wave which is
initially moving upwards and then the wave which is initially
moving downwards, Both of these waves have a particle velocity
-c/2EA Ri(t). In order to facilitate the derivation it is further
assumed that x, > X;. Then the velocity Vh,up(t) at x = Xy due to
the upwards traveling wave obtains its first contribution after a
time (xh + Xi)/c‘ i e. the time necessary for the wave to reach the
top and upon reflection the station x = X. The wave will again be
reflected at the bottom end with no sign change in velocities and
reach x = X, a second time with the same sign in the velocities.

Thus, when observing the wave's action at X = X for a time t < 4L/c

_ c X, + X o 2L +'Xi - Xy
Vh,up(t) - Eﬁ{Ri(t h C )+ Ri(t - c )
{(3.23)
2L+ X, t+ % 4 + %, - X
_ R-(t"“ h 1) . R-(t"’ 1 h)

1 c




Similarly the influence on the velocity at x = X, of the initiaily

downwards traveling wave can be determined.

c Xh - Xi 20 - Xi - Xy
h,down{ 8 = ZERERy (8- =) - Ryt - —— )
2L+ % - X, 4l - X. - X
h i i h
+ R (t - )+ Rt - ———L Ty

(3.24)

Observing that the waves arrive with the same sign of force and
velocity after every 4L/c then superimposing the results from

Equation 3.23 and 3.24 the velocity Vh(t) due to Ri(t) becomes,

for rﬂk < t< (r+ })i&
t— = o
v (t) =§§KJEO{R1-(1:-§-LE—X1_ jiﬂi%,)

N Rw(t ) 2L + xze Xy ) jﬂ%J
i Ri(t ) 2L+ XE + X ) Jﬂ%
- Rylt - 1 C LI 1))
R - *h ; Xi 35%0 Rt “ZL XXy jﬂ%)
+R1(t~2L+X2 Xi-*sﬂé
"R (t - ~ ; . (3 + 1)5%)} (3.25)
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where again r = 0,1.2,..., indicates the time interval considered.
(iii) Free Pile with a Known Force at the Top

In this case a force FA(t) is prescribed at the top and no forces
act along the pile. It is desired to obtain an expression for the

velocity at the pile top v, _(t), due to this force. The reflections

top
of waves at both ends of the pile have force but no displacement
restrictions. Thus, if the applied wave induces compressive strains
then all the reflection waves will have tensile velocities. Reflections
will always add to the top velocity on every wave arrival at the top.

From proportionality and due to the discussed reflections the result

can be readily obtained.

(t) = T%X(FA(‘C) +2F, (€ - 2L/c) + 2Fp(t - aL/c) +...)
(3.26)

Vtop

or using the notion above Equation 3,26 can be rewritten to yield

for rg%-jvt < {r+ 1)2%
v, (1) = S{F,(t) + 2 § F.lt - '—2——‘:)) (3.27)
top EAM A 321 A ¢ ‘

(iv) External Force Acting on a Pile with Free Top and Bottom

The external force may again be denoted by Ri(t) and act at
X = X The reflections will be of such a nature that the waves
arriving at the top always add to the top velocity vtop(t) if Ri(t)

does not change sign. Hence for 0 < t < 2L/c




X 2L - Xy

- =C i
Yioptt) = galR; (t = =) + Ryt - ——)] (3.28
and for r 2L/c < t < (r + 1)2L/c
r X: o 2L - . x
_ =t i 2L i .2b
top(t) B Eﬁ.jzo Ryl - — - 3 + Ryt - — =

3.4 Soil Resistance Forces

In this section the relation between the velocity at the top of
the pile and the magnitude of reaction forces which are assumed to
depend on the pile displacements and pile velocity will be derived,
A discussion of this soil model is given in Chapter V. For ease
in computation the resistance forces are assumed to act a finite
number of stations at uniform spacing so that their appTication
in a lumped mass analysis is possible. The mode]l splits the soil
resistance force Ri(t), forces acting at time t and x = X5 into two‘
components: a static component called the shear resistance Si(t)
dependent upon the pile displacements and a dynamic component
Di(t) referred to as the dynamic or damping resistance which is
dependent on the velocity at x = X
(i) Shear Resistance Forces

The shear resistancg force acting at x = X3 and time t has a
force displacement relation as illustrated in Figure 2.2 of Volume I.
Through the first unloading, i.e. before the velocity becomes

positive a second time, this relation is given by:



ksus (t) for uy(t) < g (a)
Si(t) = Si,e for ui(t) > Qs Vi(t) > 0 (b)
Si,o - ki(max uy - ui) for ui(t) < max u (c)

(3.30)

where ki ig the soil stiffness, Si o is the ultimate shear resistance,

3

ui(t), vi(t) are pile displacement and velocity, respectively and

max u, is the maximum dispiacement before or at time t. As a
theoretical example of how a shear versus time relation can be
developed, it is now assumed that only one shear force is acting, that
it is caused by a velocity VA(t) which is applied at the pile top, and
that at the pile bottom is a free end. This example will demonstrate
the main features of wave propagation effect of a shear force.
Subsequent quantitative results, however, will be much easier obtained
by a lumped mass analysis. The shear versus displacement relation
requires the individual treatment of the three different laws described
in Equations 3.30 a, b, c.

Suppose the wave caused by the hammer blow is described by a
pile top velocity, VA(t). Then at a time x,/c the wave will arrive
at x = x;. Thus, Vi(t) and uj(t), the velocity and displacement of
the pile, are zevo at x = Xs before xi/c. When the wave arrives
the shear resistance force, Si(t), will tend to resist the motion of
the pile and reduce the applied velocity by sending out waves in
both directions along the pile. This reduction in velocity is

proportional to the acting shear resistance force, Si(t), which in
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turn is proportional to the actual displacement. Thus, if X5 is
far enough from the ends of the pile so that no reflection wave will
arrive within the time interval now considered, the actual velocity,

vi(t), at x = x; is given by
vi(t) = VA(t - xi/c) - ¢/2EA Si(t) (3.31)

If the actual displacement, ui(t), is smaller than the quake, a5

the shear resistance is given by Equation 3.30a.

du, (t)
but vi(t) = ~»é%~»-so that Equation 3.31 can be written as

du.
7‘% + K, ?‘E‘R u; (t) = vy (t - —-‘C—) (3.32)

By introducing an integration variable s, an initial condition
ui(t - xi/c) = 0, and by defining v = t - x;/¢ the solution of
Equation 3.32 yields the actual displacement x = Xy

1 ck,
ui(T) = VA(S)EXD{(~ égﬁ(s ~ )}ds {(3.33)

0
I ti] is defined as the time when ui(t) becomes equal to qy s Equation
3.33 is valid for x;/c <t <ty At time t;y the shear force reaches

its ultimate value. Therefore, from Equation 3.3]
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vi(t) = vplt - xy/c) - ¢/2RA 5, (3.34)
and
ti,o X; c
up(t) = ay ¥ Valt - =gt - 28 Sy ol - )
ts1 (3.25)

This equation is valid until a time ti o when the maximum displacement

is reached. This happens when vi(t) becomes zero, thus, from

Equation 3.34

VA(t - xi/c) = ¢/2EA Si (3.36)

1,0 0

These equations assume no reflection waves have reached x = X3
In most of the cases the velocity VA(t) stays greater than one

half of the proportional resistance forces for a time until the first

reflection wave returns from the bottom end. Also the initial

portion of the reflection wave which carries the effects of

Si(t) < S, , has usually passed the station x = X, before t. .
is reached. Then the above condition® Equation 3.36 becomes
2L - X; o
VA(ti,o - xi/c) * VA(ti,o h C ) = ?ﬁ'si,o (3.37)

Here the first term on the left hand side is due to the directly
arriving wave caused by impact, the second term is also due to the

impact wave but after reflection at the bottom. The term on
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the right hand side is due to the effects of both the ultimate shear
resistance at time ti,o plus the shear acting at a time 2(L - xi)/c
earlier,

After © = ti,o unloading will start i.e. the shear resistance
force will decrease by virtue of Equation 3.30c., Unloading effects
will be investigated in a Tater section using a simple example. Their
effect at the top of the pile will, in general, be observed at a
later time and are, therefore, not considered in detail here.

Examples for shear resistance forces and their effects on the
pile top will be given below and in Chapter II of VYolume I.

(11} Dynamic Resistance Force Acting at the Pile

The dynamic resistance is assumed to behave Tike a linear viscous

damper. If the damping constant at a point x = X; is denoted by

d; and the actual velocity by vi(t) then the dynamic resistance

force Di(t)’ defined to be a concentrated force, is

Dﬁ(t) = divi(t) (3.38)

The actual velocity at x = X5 is determined by the particle velocities
of the two waves in the pile, Ve and‘vg, (Equation 3.4) traveling

in negative and positive x-direction, respectively. Further, the effect
of the damper itself has to be superimposed. The particle velocity

at x = X3 due to the dynamic resistance is again determined from

Equation 3.12. Thus, 1f the velocities of the waves arriving at

X = %; at time t add up to v, a(t) then the actual velocity is
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v (1) = vy (0) - %Di(t) ¢/ER

i,a

and after inserting Equation 3.38 this becomes

vi(t) = vi,a(t)/(i + dic/ZEA)

Therefore the damping force can be calculated from

D, (t) = di(vi’a(ﬁ)/(l + dic/ZEA)) (3.39)

2L - X-
1

C

having particle velocities - %Di(t)c/EA. For times X1/C <t <
or xi/c < t«< BXi/C Vi,a consists of the impact wave velocity only.
More complicated superpositions occur after one of the waves

resulting from Di(t) or the impact wave reach again x = X, after
having been reflected at top or bottom end of the pile. [If the damper
is Tlocated at the bottom end of the pile then simpler superpositions
occur. In this case the initiating wave, Vn,a(t)’ will be reflected

at the same time that the damper reacts. Thus
- \ €
vn(t) = Zvn’a(t) - D (theg (3.40)

and the damping force exerted by a damper located at the bottom end

having damping coefficient dn is determined by
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If the only wave arriving is that due to the impact then

ZVA(t - L/C)

e Wt (3.42)

(111) Dynamic and Shear Resistance Force Together
An important result can be obtained for the specific case where
a shear resistance force Sn(t) and a damper having coefficient dn
resist the motion at the pile bottom together. For clarity no
other resistance forces are assumed to act along the pile.
Considering only a time after the bottom displacement has become
greater than the quake and only before a time 3L/c, i.e. before the
impact wave arrives a second time at the bottom, then the only one
wave arriving is due to the impact. Thus, becuase of immediate

reflection alone

Vn,a(t) = ZVA(t - L/c).

Due to the shear a reaction wave will be sent upwards having

particle velocity

_c
Vs(t) o7 Eﬁ'sn,o




and due to the damper

vy(t) = - g Dylt)

But

il

Dn(t) dnvn(t)

where vn(t) is the actual pile toe velocity given by superposition

of all waves. Thus,

vn(t) f ZVA(t - L/c) - c/EA(Sn30 + dnvn(t))

which leads to

v (t) . ZVA(t - L/C) - C/EA Sn’O (3“43)
n T+ cdn/EA

and the damping force Dn(t), therefore, becomes

2v,{t - L/c) - ¢/EA.S
D (t) = d 2 n,0
n n T+ cdﬂ/EA (3.44)

1t

3.5 Resistance Delta Curves

In Chapter II of Volume I Delta curves were introduced as a means

of studying the effects, at the pile top, of the actual resistance
forces by means of the Measured Delta curves referred to here as a(t).
The effect of resistance forces acting at x = X; due to the chosen

soil model were investigated by means of Resistance Delta curves,




called Ai(t).
A1l Delta curves are defined to be the effects of the acting
resistance forces (depending on pile displacements and velocities)

at a fixed pile top when the pile tip is a free end.

In the previous section the resistance forces had been derived
for specific cases as a function of time, depending on the impact
velocity, VA(t). In the following paragraphs examples will be given
using either a theoretical resistance veréus time relation or a
simplified top input velocity VA(t). Since a resistance Delta
curve; Ai(t)’ for a force Ri(t) acting at x = X 15 the force
on the fixed top of a pile under action of Ri(t) only, the Delta

curve is expressed by Equation 3.22 as derived in Section 3.3.

Thus
r X, 2l - x
- _ i 4L i AL
FtOp(t) - A'E(t) = J-_Z-O {R'l(t - ——C— - J""E) + Ri(t - c . J""-C“
2L+ x. 4L - x
i AL i AL
- Ryt - ——L - %) - Rt - - i
(3.45)

for rdl/c < t < {r + 1)4L/c where r, therefore, indicates the time
interval considered.
Suppose a shear resistance force acting at x = Xs is given by

S.(t) = H(t - =1)s, (3,46)



‘This shear resistance force has zero magnitude until t = xi/c and

‘is constant thereafter, as descyibed by the unit step function

H(t - xi/c). Using Equation 3.4b

r 2X.
- i 4l 2. AL
8 {t) = S5 4 jEO H(t - —+ - 32) + Ht - i)
2L + 2X.
CH(t - et - j%-) - H(t - —ﬂ'—‘:c-- '—4—%)} (3.47)

 Both shear resistance force and the corresponding Delta curve are

plotted in Figure 3.3 a,b for two cases of shear resistance namely

Xi = L/2 and X = L, respectively. In comparing Figures 3.3 a,b
with Figures 2.8 and 2.9 of the first volume it can be observed that
the simplified resistance law as expressed by Equation 3.46 gives

a good approximation of the actual circumstances. In order to study
the effect which unloading has on a shear resistance Delta curve a
second example will now be given for a shear resistance acting at

X = X given by

. (£) = §; (- x/e) - gt - 2] (3.48)
This means that a time 2L/c the resistance force is assumed to decrease
to half its ultimate value. Figure 3.4a shows the shear versus time
relation for Xy = L/2 and x = L. The resistance a-curves obtained
from applying Equation 3.45 are shown in Figure 3.4b. The terms

resulting from applying Equation 3.45 are individually shown before
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they are added. Worth noting in this figure is the fact that negative
resistance Delta values are obtained for dh./c <« t < 6L/c and it can
be concluded that negative values in the Measured Delta curve, as for
example in Figures 2.5, 2.6 and 2.7 of Volume I will arise from
decreasing resistance forces, either shear or dynamic. Obtaining
a dynamic resistance force as a function of time is somewhat more
complicated even if an idealized velocity input is used.

In order to compute Di(t) the velocity of the pile particles
at x = X, has to be found. This velocity multiplied by the damping
coefficient di yields the damping resistance force. If the sum of
the particle velocities of the two waves arriving from either
direction at x = x; at time t is denoted by Vi,a(t) then the actual
velocity of the particles at the damper, Vi(t) can be computed by

use of Equation 3,39.

a, v, .(t)
V_j(t) = —'1'-"*&-:5 V_'-’a('t) = ""T—'-Lé'f*—-'— (3.49)
T+ SER
Thus
dq
o = ——a— for i # n (3.50)
T+
ZER
and
_ dn
. r-aa for 1 = n from Equation 3.42
n
T

It should be noted that the waves arriving from either direction at
X = X, can be the result of a superposition of various other waves,
A general derivation of Di(t) becomes very involved and amounts to

a complicated bookkeeping of all the waves traveling through the




: pile. Therefore, two special cases will be presented as an

| iTlustration of the main features of dynamic resistance forces. A

- damper at x = L/2 and a damper at x = L will be chosen as examples
| and the computation Timited to times t < 4L/c.

In order to find the magnitude of the velocities of the arriving
waves, applied velocity and velocities due to the damping force will
be considered separately. If a velocity, VA(t), is applied at the
top of the pile at time, t, then due to this velocity alone, the
velocity at x = L/2 for times t < 4L/c can be computed from Equation

3.19. This leads to
vi alt) = vl - Lr2e) + vy (t - 3L/2c) - vy (t - 5L/2c)
- vy (t - 7L/2¢) (3.51)

If a damping force, D;(t), is acting at x = L/2 at time t then two
waves are generated traveling upwards and downwards away from the
location of the damper both having the same particle velocity
—cDi(t)/ZEA. Due to the initially upward traveling wave, the pile

at x = L/2, is subjected to the velocity

- ?%K£Di(t - L/c) + D.(t - 2L/e) - Dy (t - 3L/c)]
(3.52)

V.
i,up

The three terms on the right hand side are due to reflection waves
arriving. The first coming from the top after the first reflection,

the second arriving from the bottom after the second reflection and



the third due to a wave arriving after a reflection at the top, this
time having been reflected a third time.
The effects of the initially downward moving wave on the velocity

at the damper Tocation can be expressed as

Vi down = ZERE-Di(E = L/e) + Dy(t - 2L/c) + Dy(t - 3L/c)]
(3.53)

Summing up all the effects of applied and resistance waves yields,

after simplification, a velocity of the arriving waves for t < 4L/c
Vialt) = valt - L/2e) + vy(t - 3L/2¢) - v, (¢ - 5L/2¢)

- VA(t - 7L/2¢) + ¢/EA D(t - 2L/c) (3.54)

[}

But Di(t - 2L/c) aivi,a(t - 2L/c)
= ui[VA(t - BL/2¢) + VA(t - 7L/2¢c)]

and therefore
Vi,a(t) = VA(t - L/2c) + VA(t - 3L/2¢) - VA(t - 5L/2¢)
(1 - uic/EA) - VA(t - 7L72¢c)(1 - aic/EA) {3.55)

witich leads to D; (t) by multiptication with oy

Figure 3.5a shows the graph of Di(t) for an assumed constant velocity




*f magnitude v,(t)/c =1 and a damping coefficient d, = 2EA/3c, sO

that a; = FA/2c. Figure 3.5b shows A.(t) due to this damping force

bbta1ned from applying Equation 3.45 by graphically superimposing

the applicable terms as was shown in Figure 3.4,

If a damper is located at the pile bottom then only waves

ﬁrriving from one direction have to be considered. This leads to

simpler computations. The arriving wave velocity for times t < 4/c

.is then given by

= Z[VA(t - 1/c) - VA(t - 3L/c) + c/EA Dn(t - 2L/¢c)]

2wyt - L/e) - vylt = 3L/e) (1 - o c/ER)]
(3.56)

and, therefore, the resistance Delta curve for t < 4L/c is

s, (1) = 20, [yt - 2L/c)] (3.57)

since Dn(t) = “n'vn,a(t)' Both Dn(t} and An(t) are shown in Figure 3.5c,d,
respectively. Applied velocity and damper coefficients were chosen

the same way as in the previous example. This resistance Delta curve

seems identical to that for a shear resistance at the tip of the pile.

0f course, this {s a result of the choice of a constant velocity at the
pile top. It was found in analyzing actual records where the velocity

showed only a small decrease after the maximum that it is, in fact,

difficult if not impossible to distinguish between shear and dynamic
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resistance forces. Further detailed discussion of this important

point is presented in Chapter IY of Volume I.

3.6 Prediction of Soil Resistance Forces Acting along the Pile

under a Hémmer Biow

Using the concept of Measured and Resistance Delta curves a
prediction scheme will be developed for the magnitude of forces which
act along the pile under a hammer blow. Their effects at the pile top
are displayed in the Measured Delta curve which is derived from
acceleration and force measured at the pile top.

The actual resistance forces are distributed along the pile. For
ease in computation it will be assumed that they act as concentrated
forces on n equzily spaced locations along the pile. The nunber of
unknowns is slightly reduced by assuming that the pile top element
has no resistance forces acting, an assumption which is sensible
because part of the pile is wsually above grade and the topmost
soil is usually not in contact with the pile due to transverse
pile vibrations. Thus, the magnitudes of (n - 1) quakes, qss (n - 1)

ultimate shear resistances, S , and {n -~ 1) damping coefficients,

1,0
di” have to be computed.

As outlined in Chapter II of Volume I, the i-th quake will be
assumed to be reached when the velocity at the point x = X reaches
a maximum, If no resistance forces were acting, then this dispTace-

ment would be the same as the displacement at the top at time tm’

the time when the top velocity has a maximum. Cnly the bottom end



uld obtain twice the displacement due to the reflection of the

{Ving wave. The effect of the resistance forces can be estimated

Y. considering the Measured Delta curve. [In Section 3.5 it was found

that a shear resistance force nroduced a pile top force effect of twice

té yltimate shear resistance value at time tm + 2L/c. A damper at

thé pile toe alsc yields a top force effect of twice its maximum

"TGSistance force at this same time. The Measured Delta curve is equal

oﬂthe sum of all Resistance Delta curves if the parameters are

6}rect. Thus, A(t) shows, at a time 2L/c after impact, twice the
agﬁitude of the sum of all resistance forces if all the damping

orce is assumed to act concentrated at the bottom end. The effect
all ultimate shear resistance forces and the effect of the toe
émping force on the toe velocity is proportional to their respective
aﬁe particle velocities or maanitudes of resistance forces. Thus, the

‘maximum velocity at the pile bottom at time L/c + t s
- e 1y
max v, = ZVA(tm) er oa(t, * 2L/c) (3.58)

where VA(t) is the top measured velocity and a{t) is the magnitude

Of the Measured Delta curve at time t.

A good estimate on the bottom end displacement can be obtained by

max v
q, = un(t + L/c) = uA(t } e T i (3.59)




uA(t) being the pile top and un(t) the pile tip displacement, The
quakes for locations other than pile top or pile tip are linearly
interpolated so that

X
qiup(t ) = Lup(t ) - u (g + L/c) I (3.60)

Quakes resulting from this calculation which are larger than
.12 inch are set equal to this value. The quake, therefore, cannot
exceed commonly recommended values for sand (4). A Jower bound is
not introduced because it is desired to keep the quakes small enough
so that the ultimate resistance can be reached at all elements. The
prediction scheme for quakes is based on the following considerations:
Examples of Measured Delta curves are shown in Chapter II of
Volume I, Figures 2.5, 2.6 and 2.7. ATl three curves, although obtained
from pilés having very different behaviors have their maximum value at
a time 2L/c after maximum velocity at the top. If skin damping
forces are considered small then this means that the maximum shear
and damping forces were all reached before or at a time L/c-after
maximum velocity at the top. Then, the toe shear resistance force must
have reached its ultimate value at the same time. This time, however,
is the time of maximum velocity at the pile tip. Consequently, the
quake of the tip shear resistance force is reached at the time of
maximum tip velocity, a result which is extended to all points along
the pile. In chapter III and IV of Volume I this point is further

discussed.



Although several simplifications have been made in the above

faescribed computation, quakes will, in general, result which lead to

;fhe ultimate shear resistance at the i-th element at or before a
;%fme tot x;/c. Therefore, in the absence of dynamic resistance forces,
;%ﬁé value of the Measured Delta curve at time t + 2xi/c will be a
;fésu1t of a superposition of the top force effects of the first i

“ultimate shear resistances plus some small influence of the already

ijncreasing shear resistances of lower elements due to the part before

Qimaximum velocity. Calling this influence e, and defining t, = tot

ﬁ;éxi/c then

(3.61)

(3.62)

(3.63)

If it is then assumed that the difference £, - €y is small the i-th
ujtimate shear resistance has been found. Figure 3.6 serves to clarify
‘this point by use of a theoretical example. Several theoretical

Resistance Delta curves (ai) are shown - corresponding to shear
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resistance forces - whose sum corresponds to the Measured Delta curve
(b). At times t. an influence ; from the next Tower shear resistance
force can be observed. The S0 j were assumed to he equal in this

5

example so that for i n-T1,

TR B
This computation can be performed the same way for all elements
except for the bottom where the effect of all the bottom reflected waves

requires a top reaction force of twice the total resistance. Thus, an

approximation for the n-th shear resistance force can be computed from

]
So,n - 2[ (tn) - (tnu¥)] (3.64)
wh t =t + 2L dt =t + 2xn_1 This computation scheme will
ere t = 0 cand t . . - computa

not apply when damping forces have to be considered and when tm is
reached so late that (tn-1) contains already effects of the return

of reflection waves from the bottom. In that case an improvement

of the above described method for predicting ultimate shear resistance
forces can be obtained if the damping effects and the effects due to
reflection waves are subtracted from the Measured Delta curve. For
doing so the magnitude of damping forces must be known. An estimate
of the maximum damping force, max D, can be obtained from the simpTlified
Phase I1I prediction method as described in Chapter II, Volume I,
Section 5 and in Chapter VI, Volume II. If it is assumed that al]
this damping is concentrated at the pile bottom (actually damping

will be distributed but a large percentage is in most cases found to
be concentrated at the bottom) then its effects at the top will be
proportional to the top velocity shifted over a time 2L/c as shown

by the Resistance Delta curve in Figure 2.11 of Volume I. (This




js actually only true for no other resistance forces acting, but
';~since the shear resistance forces are constant except for a small

:ﬂl_portion before the quake is reached this gives a good approximation).

The doubling effect due to the return of reflection waves from

:ﬁ 'Shear resistance can be assumed to be proportional to the Resistance
- Delta curve for a shear force at the pile bottom. Such a Resistance
aﬁf-De]ta curve, however, can be assumed proportional to the pile top
displacement until tm and constant thereafter with a time lag of 2L/c.

The resulting Reduced Delta curve is then

oV (t - 'g'!é‘) .UK t"'g-’é')
: Ared(t) = a{t) - 2 max D TEaA - S0 A (3.65)
f where
uA(t) for t < t_
ux(t) =
g1 for t > tm

and SD is the sum of all ultimate shear resistance forces.

Using the Reduced Delta curves the equation for the prediction

of ultimate shear resistance forces becomes (see Equation 3.63)

- forio=1,2,...4n

So,i = A(ti) - A(ti_]) (3.66)

The damping coefficient for the bottom damper remains to be computed.
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From Equation 3.58 it is possible to predict the maximum velocity at
the pile tip using both measured velocity and Measured Deita curve.

Therefore,
d. = max D/ (2 max Vp - c/2EA) A(tm + ZLXC)) (3.67)

A1l necessary parameters for performing a lumped mass analysis have
now been approximately determined and the top force and all dis-
placements can be calculated using the measured velocity and the
predicted soil resistance forces as input. To improve the values
an analysis should be performed.

The difference between measured and the pile top force computed
in the lumped mass analysis using the predicted soil parameters can
again be considered to be a Delta curve. It will be referred to as an
Error Delta curve Ae(t), and provide a means of computing corrections
on the first predictions. These errors can be due to a pile tip
velocity different from the prediction and the assumptions used in
reducing the Measured Delta curve can also account for errors. Other
errors, however, will also be introduced from assuming that i—tﬁ
shear resistance force had the same top force effect at time tiq
that S,,,(t) had at t,(i.e. ey = i)

The Error Delta curve can be considered a Measured Delta curve
which must be the sum of Resistance Delta curves. This time the

computation becomes somewhat simplified since for every element

both a velocity and displacement versus time relation is available




lwhich can be considered an approximation, whose quality depends on
‘the relative magnitude of the Error Delta curve. Using, again, the
;concept of Resistance Delta curves it is now possible to set up
“matrices whose coefficients are influence numbers reflecting the

_top force effect of a resistance force at time tj = 2xj/c at the

Thus, for the shear resistance forces a matrix C is

2L = X,
_ 1
¢y 4 = Uyt - xy/e)ag Ut - — }/a; (3.68)

ui(t) for ui(t) < q;

ay for ui(t) > 0

As an example of the meaning of cy ;
5

Aj(tj) = So,icj,i {3.69)

“In the same way for damping forces a matrix E is set up having

elements

R

ey 5~ (Vi(t - xi/c) + vi(t - 1Y) /max v (3.70)




&i(tj) = Max Diej,i (3.71)

This matrix is used later on for distributed damping resistances.

It will be understood that max Di is the maximum damping force
occurring on.the first arrival of the impact wave. It is expected
that a higher, second maximum is obtained (of about 2 max Di as can
be seen in Figure 2.12 of Volume I) after the impact wave is reflected
at the pile bottom. This maximum damping force, max Di’ 15 known to
occur at a time tot xi/c and, therefore, its top force effect will be
seen on top at time t, * 2xi/c = ti' Thus, ej,i will be a convenient
tool for computing damping resistance forces when Di is not zerp
along the pile skin, By use of Cj,i and ej,i it is now easy to reduce
the Error Delta curve by the effect of reflection waves at 2L/c and

by the difference, aD, between necessary damping (max D) and damping

tound in the previous analysis (max D®), thus, if aD = max D - max D@

Ae,red(tj) = Ae(t) - ejsnAD (3.72)

The corrections on the shear resistance forces can now be computed

using the same approach as in the initial shear force prediction
80,1 = e realti) - Ao eq(ti_q) (3.73)

The corrected damping coefficient can be computed from Equation

3.67 where the expression in the denominator on the left hand side




ig-rep1aced by max v, as obtained in the Tumped mass analysis.
" 1ip order to further improve the predictions another lumped mass

ons obtained and this

The

ana]ys15 can be performed and further correcti

process continued until the Error Delta is sufficiently small.

umber of necessary iteration cycles depends on how well the soil

mode] describes the actual soil behavior. For good agreement between

the assumed and actual soil action four iteration steps usually

foice. In many cases, however, the Delta curve portion of the
“rgcord for 2L/c after impact cannot be reduced to small values.

h éuch cases the computation is terminated after the 8th attempt.
When requiring the Error Delta curve to become smaller than a
ertain bound it is important to realize the different sensitivity

f an Error Delta curve at different times to a change in prediction.

\s in any other Delta curve an error, 51’ at x = X, will result in

'a Delta curve approximately given by

=
——
t
—
il

Asi for ti < t < tn

énd

=
—
+
N
1

ZASi for tn < t < t1’0 T xi/c

Thus, the portion of the record for tm <t < tn is less sensitive
io errors than the later portion of the record. The following
_triteria, therefore, have been established for a sufficiently small
Error Delta curve accounting for the different sensitivities in the
record (a further discussion of these criteria is given in the

‘example in the next section).
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. ‘ n-1
[V [ — 1 - belthdt | < CRy = 0.02 max F,
n=1
: (3.74a)
2
t
1 n
|E2| = Y [ Ae(t)dt <CR2 = 0.05 max FA
n n-1
: (3.74b)
-
1 f
I, = E;mrn?; Ae(t)dt < CR3 = 0.10 max FA
tn (3.74c)
where FA is the maximum measured force
and
1 4L/c for no unloading
tf < { (3.75)
{tn o + L/¢ otherwise

with tn,o being the time of zero velocity at the pile tip. This

way it is not required that the predicted and measured top forces match
after unloading effects become apparent at the top. It was found

in applying the above described error criteria that the |E1|~ numbers
can be efficiently used to control the computation process: As long

as |E1] is too Targe the shear resistance forces Si,o along the pile
skin have to be corrected, when |E,| is sufficiently small but

|Es| 1s not less than CR, then either toe damping or toe shear have




Q be adjusted by an amount equal to one half of |E2|, and when
|E,| and |E1| are small then a check on |E;| determines whether or
not the total maximum amount of damping used was correct. This is
dUé to the fact that a Resistance Delta curve for damping decreases

ﬁh a higher rate after t + 2L/c than a Resistance Delta curve for

shéar forces. Therefore, damping has to be added and shear resistance

Siracted at the same time if the predicted force is greater than the
mggsured force for t > tm + 2L/c, i.e. for E5 > 0 the opposite has to
be done.

Thus, an improved total damping value will result from

max Dimp = max D - E3/2 (3.76)

'ére it is assumed that the shear resistance forces stay constant

111& the damping forces decrease immediately to zero after tm + 2L/c.

This scheme, although quite crude, usually leads to a satisfactory

itch over the third portion that is t from t to t. as long as the
5011 model allows a good match in that region.

Once, the inequalities 3.74a, b, ¢ have been satisfied the
reaiction for all damping at the tip is accomplished.

The assumption of all damping concentrated at the pile tip might
1e}d a good match. However, it is possible and probable that damping
IC§tions influence the predicted top force two more methods of

amping distribution are tried. One of these methods is to place

ping forces uniformly along the skin, i.e, for i = 2,3,...,n-1.



Thus, (n-2} damping forces are chosen to replace the bottom damper.
Calculating with the damping makima; max Di; occurring before the
impact wave reaches the bottom and assuming that the max Di are one
half of the maximum damping éffect felt at the top at time 2L/c

(see example in Figure 2.12 of Volume I) leads to

max D, .
- i (3.77)
"X Dy T T gy

However, a check must be made on whether these damping forces would
not result in top force effects larger than specified by the Measured
Delta curve. Using the E-Matrix this can be checked

n-1

) max D.e,

< a(t,) (3.78)
i=2 J

.i

If for some time t = tj this inequality does not hold then max Dj

has to be reduced

J=1 =1
max D, < a(t.} - F max Die, . - ] max D,e, .
J - J j=2 1 73,1 j=3+1 T Js1
j= 2,3,....,n-1 (3.79)

Also a check must be made on whether the maximum total damping force
on the return of the reflection wave would éxceed the necessary total
damping force as determined in the first prediction. Again using

the E=Matrix this check requires




n-1
_Z max Dien,' = max Dim {3.80)

”hfth can be accomplished by adding a max D if the Teft hand side is

aT]er than the right hand side or to subtract from ail max D,

2.3,...,n=1 if the opposite holds. If for j = 2,3,...,n-1

_ufhs out to be negative then neighboring damping forces have to be

'duced until the maximum possible damping forces are found. The

'}responding damping coefficients can be found from the previously

yredicted velocities (which had been used also for computing the

;j). Errors vesulting from this assumption must be small since a
iy
good match had been determined previously and the maximum velocities

jk”t <t t 2L/c will be the same for Ae(t) being small no matter

hdﬁ the match was accomplished. (The particle velocities in the waves

dué to either resistance forces have to be the same).

The computations for obtaining the ultimate shear resistances,

”.1, can be obtained in a similar manner as described above for one
-3

damper at the bottom, except that the Reduced Delta curve has to be

computed by accounting for all damping forces. Thus

The variation of the damping forces and the effects of the reflection

wave on damping usually introduces more errors in the prediction than
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in the case of only one damper at the bottom, Therefore, if damping
is large more computations have to be performed until the final
distribution produces a sufficiently small Evror Delta curve.
Otherwise, the computation is terminated after the 8th iteration.

A third way of distributing damping forces is to place only one
damper on the skin at the point where the maximum skin resistance
force in the upper half of the pile had been determined in the first
prediction., It is computed as follows:

1 s T
7 max Dim ;s 1T So,i > % max D_im

p p

o ]
max S_ . plus toe damping; if 5051 < % Mmax Di

max Di =
0,i

mp

Essentially this computation is the same as when damping forces are
distributed uniformiy.

Once the final Error Delta curves have been found (these three
curves usually differ at and after tm + 2l/c for all three damping

distributions) a Tinear combination of their SD ;

5

and di is used
to find a final selection by minimizing the resulting Error Delta
curve, If pf stands for the i-th resistance force {either So,i or
di) obtained in the j-th damping distribution method and a super-

script f is used for the final result, then

f

P; = ai1p; + a:p% + asp? (3.82)
where

ap + ap + az = 1 (3.83)




aL/c
(Ag(t)zw(t)dt = 0 (3.85)

here w(t) is a weighting function. Since the errors in the initial
srtion of the match are due to measuring inaccuracies these effects
an be removed from the computation by setting

w(t) =0 for 0 <t <tp

o the portion of the record where unloading effects the match., will

e disregarded (See Chapter III of Volume I for examples), thus
w(t) = 0 for t > te (3.86b)

here tf is as defined in Equation 3.75, In order to place more

MQhasis on the improvement of the first 2L/c of the match the rest

f- the weighting function may be defined as

for t, < t <t
n




However, not too much improvement can be expected from choosing a
proper weighting function since it is possible that an application

of the least square method results in some S0 j

or di negative.
H]

Since negative values are not allowable the a1, az, and as
coefficients have to be adjusted by observing their relative maghi tudes.

As an example suppose that as < 0 and that for some Jj the ratio

a3p3
J < 0 and smaller than any other ratio i # j, i = 2, 3,...0,

a;p% + 32P§

n

n .
then the new constants, aj, a5, ag can be determined from

al *'J(a?pﬁ + azp?)
p3
J
al +all + ay = T (3.87)

and

n,.n
ay/a, = aj/as

Using a?, ag, ag in Equation 3.82 leads to the final result if a
second coefficient is not negative, in which case the process has to

be repeated,

3.7 Computation Example

As a computation example the record obtained from pile F~60
Blow No. 26-A is used., The record, i.e. force and velocity, is
shown in Figure 2.1. After subtracting the precompression force,

Sp' (for explanation see Chapter IV) in this case 40.6 kip, the



curve shown in Figure 2.1 of Volume I was obtained.
The pile length below the accelerometer was 59 feet. The pile

as of 12-inch diameter pipe with 1/4-inch wall thickness and a Cross

fﬁna1 srea of A = 9.82 inch?.

;The wave speed for such a steel pipe pile had been experimentally
fied by placing one accelerometer on either end of a 50 feet
'hd applying a hammer blow on one end. The wave speed thus

termined was ¢ = 17,000 ft/s and with p = .285/386 1b(s?)/in:

E = ¢2p = 30.8 x 10 psi

. dynamic modulus is used in all analyses. The proportionality
f@r EA/c becomes 17.8 (kip/ft/s), which means that & particle
déity of 1 ft/s corresponds to a 17.8 kip force in the pile.

red in the example problem

" The maximum pile top velocity encounte

WaﬁfS.] f£t/s which corresponds to a maximum pile top force of 169

p). (The yield load of the pile is 220 kip).

The Measured Delta curve is shown in Figure 3.7a and was obtained
-Sdbtracting the free pile solution, Equation 3.18, from the measured

orce record.

‘It can be observed that a(t) has non zero values before time T,
;?h are probably due to recording inaccuracies. These values are

ﬁtto zero until a time 1.2 L/c after which A(t) starts definitely

‘oiincrease. In some of the records effects of high frequency

brations are observed which are undesired in the analysis since
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they represent only local effects and could Tead to misinterpretations.
For cancelling out such effects a new; smooth A(t) was obtained by

time averaging the original one. The result is shown as curve b in
Figure 3.7,

Integrating the top velocity until time tm leads to a displace-
ment of 0.107 inch. The maximum toe velocity is obtained using
Equation 3.58. The maximum top velocity for this case is 9.1 ft/s
and A(tm + 2L/c) = 422 kips giving

. _ 422 _
max Vn(toe) =2 x9.1 - W = 6.5 ft.s

An estimate of the toe displacement at maximum toe velocity can now

be obtained using Equation 3:59,

- , 6.5 _ .
un(tm + L/c) = 0,107 T 0.75 (inch)

Linear interpolation Teads to the quakes shown in Table (2.1).

The Phase III prediction for total static resistance is 146 kips and
the estimated maximum damping force 65 kips, Reducing the Measured
Delta curve by the damping effect leads to curve c in Figure 3.7,
This curve is then reduced further in order to remove the effect

of initially downward traveling waves from shear resistance forces.
The resulting curve (d) is a Delta curve due to the effect of the
upward traveling waves from shear resistance forces only. (An

infinitely long pile would show the same top torce effect due to shear




This curve can be used to determine the individual ultimate

sistaﬂce forces by applying Equation 3.66; In Figure 3.7 the

o=t t infc) are marked with dashed lines. Accordingly
“ _ were determined as the differences between the indicated
é(ti) - values. The Tast two shear resistances S, ; and S,
aréJaveraged since the accuracy of distinguishing these two
ces is small due to the large increase of top forces at t = tnu].

ng the maximum toe velocity as calculated above leads to the

ambing coefficient
d, = 65/6.3 = 10.3 [kips/ft/s]

soil parameters predicted so far are listed in Colume 2 of
aﬁje 3.2. As a check on the quality of this prediction a Tumped
aés analysis is performed. The measured pile top velocity and the
p édicteﬁ soil parameters are used and the corresponding pile top

fce is computed. IF the soil model were correct and if the soil

;ameters were predicted precisely then this computed pile top force

y1d be equal to the measured force (in absence of measurement
népcuracies). In general, however, differences between measured
nq computed pile top force occur. Subtracting the predicted from
_hé measured curve leads to an Error Delta curve. For the present
_XémPTE curve {a) in Figure 3.8 shows this difference curve.

A vemark on this graph is appropriate. For clarity the force
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scale was chosen five times larger than in the graphs for the

Measured and Reduced Delta curves in Figure 3;7; Considering the

first portion of the Error Delta curves (i.e. for tost< to* 2L/¢c)
it can be seen that Tocal peaks and valleys of this curve are preseryed
and the differences of the Error Delta curves occur only in an averaged
manner. Clearly, this is due to the constant behavior of shear
resistance forces, The later portion of the graph (tm + 2L/¢c < t}
shows this behavior for Error Delta curves a and b only. Of course,
the amount of damping had been changed for obtaining curve ¢ and d.
These changes influence only the behavior of this later portion.

The high frequency oscillations in the Error Delta curves are due to
small time lags from measurement inaccuraries causing a shift between
the predicted and the measured force, also the accuracy of reading

the original measured force record 1s responsible as can be seen in
Figure 2,71 of Volume I where the relative smoothness of the velocity
compared to that of the measured force becomes apparent.

It is not possible to influence the high frequency behavior of
the Error Delta curves by applying Tow frequency resistance forces
and a check on the absolute values of Ae(t) could lead to unnecessary
computations without convergence. Thus, an average is used, Also,
when using the Error Delta curve for computing corrections on the
So,i and di only a smoothed Ae(t) is used as in the case of the
Measured Delta curve,

The maximum damping force obtained by using dn = 10.3 in the

analysis was 70 kips, Using the Error Delta curve for calculating




he Aso i correcting the damping coefficient and performing another

éﬁ mass analysis leads to'the Error Deita curve (b) in Figure
FtThe damping coefficient is corrected to produce the assumed

ing force of 65 kips (i.e. d; =10. 3(53)).  The criteria CR;

he Inequalities 3.74 are shown in this figure. Here, it also can
bserved that over the first and second region the average Error

é curve stays within the bounds. Thus ,

CR;
= CRZ

[Es] > CR3
B, = 26 (kips) > O
3_is the average delta value between t = el/c + 1 and t = t,.
ESjstance force was applied. Thus, 13 (kips) total damping will
The Error Delta curve resulting from the redistribution is shown
n_curve c, Figure 3.8. Ervor Delta curve ¢ satisfies the conditions
;reg1on one and region two but not in region three since Ez < 0 and

53 < 0 this will be corrected by subtracting shear resistance. However,

'1ncerE2 was also less than zero no damping is added this time. After




another Tumped mass analysis is performed Error Delta curve d is
obtained which satisfied all three criteria. The final result is
given in column 3 of Table 3.2. As an example for the C and E matrix
the displacements and velocities were used from this final match of
the first distribution. The resulting matrices are shown in Table
3.1. Ten elements are used in the Tumped mass analysis together with
¢ = 2 (see Chapter I), therefore, X;/c = 24t, Thus, the influence
numbers represent relative displacements or velocities which are
taken at time differences of two time increments. (at = .178
milliseconds). It can be observed in the E~matrix that max vy owas
not reached exactly at tm + Xi/c but at tm + xi/c + At a time for
which there is no matrix element, Thus, ei,j = 1.0 was not obtained,
A serious defect is not introduced since the E~matrix recognizes this
fact. Note, that at j = 7 the influence of the returning wave can be
observed in both the C and E Matrix. The C and E matrix are always
recalculated when a Tumped mass analysis is performed.

The second damping distribution leads to max Di 55/8 = 6.9
(kips) maximum damping force for the second through ninth element.
The Measured Delta curve, however, indicates that the predicted force
would become too Targe in the beginning of the record. Therefore,
these damping forces have to be reduced. The result are the parameters
Tisted in Column 4 of Table 3.2.

It can be observed that some damping was used at the pile tip
element in order not to exceed allowable top force effects before time
tm + 2L/¢c. The So;i had been obtained after reducing the Measured

Delta curve by means of the E and C - matrix. Figure 3;9 shows the
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ssively improved Error Delta curve obtained until finally the

criteria were satisfied, The final result is given in Column

able 3.2.
.n the third distribution a max Dy = 6.4 kips was used

esponding to S0 3 which was the maximum shear resistance force
SR ‘ H

f for the first distribution.
57

hé pile skin in the upper pile hal

wise, for the pile toe a damper was necessary for max Dn =

{the total damping determined in the second method was 69.8

therefore, max D = 69.8 - 2 x 6.4 = 57.0).

Since the difference between the third and the first method

sma11 for a small damping force at the skin a sufficiently small

- Delta curve (see Figure 3.10 was obtained already from the

diction. Soil resistance parameters obtained from this distribution

iven in Table 3.2, Column 6.

In Figure 3.11 the predicted top forces are shown for all three

redictions together with the measured force.

Now, the least square procedure can be performed. This Teads

a; = 1.48
dg ~ 0.09
ag = ~0.57

:? negative ay produces a negative damping parameter, d3 = -0.3

_ich is discarded since its effect is small. The final result is

fébu]ated in Column 7 of Table 3.1. Thus; S0 = 157;4 (kip and max D

52 (kip).
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This So is the shear fesistance acting under impact. But the
hammer compression force Sp; had been subtracted from the total
record, This static force has to be added to SO in order to obtain
Ro’ the total static bearing capacity. As for the distribution it is
sensible to add to all So,i a contribution of this static force
proportional to the dynamically predicted value. The total static
bearing capacity then becomes R, = 157.4 + 40.6 = 198.0 (kip).

The final distribution and the Toad test curve predicted from this

resuit are presented in Chapter III of Volume 1.




CHAPTER IV

.Study on Characteristics of Force and Acceleration Records

ntroduction

“As a basis for the studies on pile dynamics presented in this

k'ﬁtwo quantities must be available as continuous functions over

ﬁfnamely force and acceleration measured at the top of the pile.
éducers, signal conditioning and recording devices have been

ribed in References (5,6). Several observations were made which
d to be explained. In records taken on a pile driven by a Diesel

mme

r an increase in force was noticed some time before the impact.
force arises due to pressure building up in the combustion
amhér of the hammer. It seemed surprising, therefore, that no

celeration was recorded before the impact. Thus, the proportionality

ftionab]e. This and futher details observed in acceleration and
vrecords are discussed in Section 4.2. Another phenomenon which
Jnvestigated was the existence of an oscillation appearing in

fﬁfve]ocity and force. Since this frequency was ' not the pile

ﬁral frequency several possible models of pile-soil and hammer-pile

'ér¢ studied. The results of these studies are presented in Section 3

of this chapter.

67
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4.2 Obseérvations on Force and Acceleration in Diesel Hammer Records

Because of the proportionality between‘force and velocity in
a stress wave it is advantageous to deal with pile velocities rather
than with acceleration. From findings about velocities conclusions
can be drawn regarding the measured acceleration. Consider Figure
4.1 showing the measured force and the velocity which was multiplied
by the proportionality constant EA/c. The time scale chosen is
in L/c units. The time when impact occurs is easily identified
from the steep increase in both force and velocity. In this particular
record the force starts to build up at a time of the order 10 L/c
before impact while the velocity stays zero through the first 9 L/c.
In order to explain this lack of proportionality it is now assumed
that the pile is fixed at the bottom end and the force for the first
9L/c is approximated by a piecewise Tinear function as indicated in
Figure 4.2a. This piecewise linear function can be approximated again
by superimposing two linear functions FA,](t) and FA,Z(t)' For the
time until the first reflection wave reaches the top after having been
refiected at the bottom, force and velocity must be proportional.
Thus, for t < 2L/c the velocity is c/EA FA’](t). When the first
wave returns from the fixed bottom end its particle velocities will
have changed sign. This leads to a decrease in top velocity.
At a time 4iL/c two reflection waves will reach the top with different
signs of velocities. Thus, the pile top velocity can be written as
Viop(t) = F(Fa(t) = 2F, (¢ < 2y 2Pt - 25 - e L)
(4.1}




.ihis equation it is seen that for a Tinearly increasing top
e_fhe velocity at the top will oscillate between zero and the
:hroportional to the force at time 2L/c. Figure 4.2b shows
.iocity derived from superimposing the solutions for the two
éf_force functions. This superposition can only produce a slope
:;ve1oc1ty which is less than or equal to the maximum proportion-
pe in the force record. A simple calculation can then lead to

ximum acceleration. Suppose max f is the maximum slope encountered

héirecord hefore impact then the maximum slope of the velocity,

,1s given by
C
max a < max T Y

ax f can be expressed by a force difference F over a time L/c

AF ¢

/c k&

and Alpg = W, the weight of the pile

Ao (4.4)

the example of Figure 4.2 AF = 5.7 kips and W = 2.0 (kip) so that

= 2.9 g's. The acceleration is read from a record in which
nch amplitude corresponds to 375 g's (see Figure 4,3). It is,
héfore, not surprising that small magnitude accelerations Tike the

- 9's obtained in the example computation were not recognized in
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the record,

The results of these considerations can be expressed as follows:
The acceleration will reach a noticeable non zero value in the record
only when the time derivative of the force becomes large. Second,
the velocity of the pile will obtain some value greater than zero
which will be dependent mainly on the stiffness of the soil. Tf this
stiffness is infinite then the above derived relations would hold.
Third, the proportionality between velocity and force was lost because
of the Tong time over which the force byilt up. It can be argued
that this precompression force is app}ied in a "static" way, and
therefore, should be separated from the dynamic portion of the record
if dynamic analysis is to be used. The dynamic record might then
be defined from that point at which an acceleration greater than
zero can be observed. In most of the records this is the time
when a proportionality between force and velocity can be observed.
For comparison Figure 2.1 of Volume I shows force and proportional
velocity after the precompression force had been subtracted. The
record was the same as analyzed above.

The study of the forces recorded before the actual impact occurs
leads to another interesting observation. Frequently in pile dynamics
it is necessary to predict the hammer impact velocity, max Vi In
the case of a gravity hammer this can be done when the drop height,

h, of the hammer is known, Then

max v = V2hg (4,.5)




or Diesel hammers, however, a free fall cannot occur under the action
ff the fuel compression force. In this case the velocity has to be

mputed by subtracting the velocity due to these forces, Thus,

] 1
max v = 2hg - N Ftop(t)dt (4.6)

ere M, is the ram mass and t_ is the time where the "dynamic
Ebrd“ starts. In the example of Figure 4.2 the evaluation of the

tegral in Equation 4.6 leads to a difference velocity (the second

‘on the right hand side in Equation 4.6) of 2.7 ft/s (M =3.51 g

ps/g) which is substantial compared to the velocity encountered at

pact (max v, = 9.6 ft/s). Although the energy which the hammer

p lied does not change due to the compression another kind of

energy will be utilized having smaller velocities but being spread

f time. This fact might prove essential when applying the wave

uation method proposed by Smith (3) where one of the input parameters

used is the impact velocity.

1 A remark on the accuracy of the velocity seems appropriate.

g*usua1 recording sensitivity for acceleration is between 300 and

@00;915 for one inch amplitude in.the record. Records are read with

accuracy of about 1/150 inch, A shift of the assumed zero
eleration line with this amount can produce over the length of
_record (usually about 20 milliseconds) a considerable velocity.

effect will be even amplified when considering displacements.



Using the average of two acceleration records taken on opposite
sides of the pile should lead to an improvement in accuracy but
velocities and displacements can sti] not be reliable after some
time of integration. It was noticed in applying the Phase I
simplified theory (see Chapter II, Section 5 of Volume I} that
sometimes no zero velocity was reached, which can be explained from
the facts under consideration. The Phase II-A method (see Chapter
VI of Volume II} will introduce a major improvement because only
differences in velocity are considered over a relatively short time
and the time of zero velocity is no longer an important parameter.

Another inaccuracy can be observed in Figure 2.1 of Volume I
before maximum velocity occurs. The force should be exactly equal
to the velocity times EA/c. However, it is noticed that there is a
time lag between force and velocity. The reason is a different
response time in the signal condition equipment. This time lag often
causes large Delta curve values in the beginning of the record which
must be discarded in an analysis.

Another interesting observation can be made on records obtained
under a single acting Diesel hammer. Such a hammer consists basically
of two parts: a cylinder whose top is open and a piston, i.e. the
hammer, which falls freely in the beginning and by Talling compresses
the air in the combustion chamber. When the piston reaches the
cylinder bottom fuel is injected so that metal to metal impact between
hammer and anvil occurs together with the combustion. Impact plus
combustion force will move the pile head. In the first instant both

hammer and pile head will move together with the velocity of the




impacting hammer. The hammer cylinder originally resting at the

pile top cannot follow this rapid mpvement, thus it will start to
fall under gravity. When assuming that most of the deflection of
the pile head is due to penetration into the ground and only a
smaller portion is due to elastic deflection of pile and soil,

then the hammer cylinder will reach the pile only after the pile

has established its final position. The hammer cylinder then will
impact upon the pile top and a force and acceleration due to

this (smaller) impact can be observed in these records. Figure 4.3
shows a record in its orginal scale. In both force and acceleration
the second impact can be observed after a time AT. It is now interest-
ing to compute the distance Ug which the hammer cylinder fell freely
disregarding any friction in the leads or other losses from the time

At between the impact of the piston and that of the cylinder

ug = Ji-g(AT)2 (4.7)

and, therefore, in the example of Figure (4.3)

4. = & 386(.054)2

F5 7 .562 [inch]

During the driving operation an average set of .06 inch under one
hammer blow was measured, It seems that in cases where the set
of the pile is Targe enough and where a single acting hammer is

used more accurate information about the pile set can be obtained
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from this observation.

During Driving

Figure 2.1 of Volume I shows typical force and velocity curves
having the above mentioned oscillations about an essentially Tinear
behavior. If the Towest pile natural frequency is responsible only
pile length and material properties would be necessary to predict
these frequencies but this is not the case. Vibrations might also
occur due to the interaction of soil stiffness with pile mass, a
system which is respresented in Figure 4.4b, Another explanation
for this phenomenon developed herein is that the cushion hammer
system supported by the pile exerts forces upon the pile head which
are due to its natural frequencies. The model for such a system is
shown in Figure 4.4c, In the fo?]owing the frequencies expected
for the discussed models will be investigated and compared to those
observed in the record.

The Towest natural frequency of a pile of length L is

o
f1= 90 (4.8)

where ¢ is the wave speed.
Assuming the soil stiffness ks to be approximately

R

ke = 7 (4.9)




here the guake g can be chosen as .12 inches and Ru as the ultimate
éaring capacity of the pile; then for the system of Figure 4.4b

frequency of

(4.10)

;L'is inserted in feet and S i, in kip. The system shown in

Qure 4.4c has two degrees of freedom. If the upper cushion

%ffness is k and the Tower one Kes aﬁd if the upper and lower
é]éﬁents have masses r.m and m, respectively then the two natural

2quencies can e computed from

ko1 + (1 +s), d+r(1+s)2 sy1/? 1/2
[ﬁ'l-{ o + ( 4y . Y') ]’]

(4.11)
ie cushion stiffnesses for the transducer cushion (ks) were obtained
ipérimentally. This transducer cushion was built using alternated
:yérs of 3/4-inch plywood and 1/4-in§h neoprene sheets. 3 or 5
?YWood and 4 or 6 neoprene sheets were used. The pile cushion

tiffnesses (k) were obtained from Reference 7. In both cases statically




obtained Toad versus deflection curves were used and stiffnesses
were obtained at the different load levels observed in the force
record. A1l the parameters necessary for computing fz , are listed
in Table 4.1. The correlation of frequencies calculated from all
three methods with the observed are listed in Table 4.2.

As an example consider again Figure 2.1 of Volume I representing
Pile F-60, Blow No. 26-A. The average frequercy observed in the
force and velocity record is 409 {cps). The length of the steel pile
was 60.5 feet and hence f; = %Z§9%%73-= 70 {cps) from Equation 4.8.
The ultimate resistance obtained in the CRP test was 242 kips which
leads to an f, = 99 (cps) using Equation 4.10. The transducer
cushion consisted of 3 sheets of plywood and 4 sheets of neoprene.
The average force acting on the pile top during the blow was 150 kips
as can be obse}ved in Figure 4.3. From Table 4.1 this gives a trans-
ducer cushion stiffness of 7,250 kips/inch. The driving hammer was

a Linkbelt 440 which has a cushion stiffness of 9,300 kips/inch under

the given circumstances. Thus s = 7,250/9,300 = 0.78. Also from

Table 4,1 m = lélg-EéE§-and r o= %4%% = 4,28, Inserting these values

into Equation 4.11.1eads to a lower frequency f3 = 89 and a higher
frequency fi, = 398 (cps). As in all the other cases presented in
Table 4.2 fi, is the only freguency of a magnitude comparable to the
measured one {409 cps in the discussed example). It seems that the
only reasonable explanation for the occurence of frequencies higher
than 100 cps for the listed cases is that the two degrees of freedom
system described above vibrates in its second mode, thus, exerting
forces and velocities upon the pile head reflecting this higher

frequency.



CHAPTER ¥
Soil Model Studies

5.1 Introduction

The investigations presented in this Chapter give an insight
into the relations between the pile motion and the soil resistance
response. This soil response is approximated in Chapter II of
Volume I by a simple model, which has also been employed by other
investigators in the pile dynamics Titerature (1, 7). Results in
Chapter I1I of Volume I show that this model does not always describe
the soil resistance force, Ri(t), accurately for all times t.

The soil model is shown in Figure 2.2 of Volume I. It consists

of a spring and a dashpot in parallel, thus
R_E(t) = Si(t) + D, (t) (5.1)
Si(t) and Di(t) are the shear and dynamic resistance, respectively.
The index "i" indicates the location where the resistance force acts.
The spring in the soil model is assumed to have elasto-plastic
properties such that

Si{t) = kyux(t) (5.2)

where ki is the soil stiffness at x = X5 and

77
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ui(t) for ui(t) < 95
u(t) = (5.3)
max u; +q; - uz(t) for u,(t) > max u,
where ui(t) is the displacement of the pile at x = x; and time tj
G5 is the quake and max U is the maximum displacement reached at or
before time t.

It is further assumed that

5. () > -kiq, (5.4)
and that

Sn(t) >0 (5.5)
i.e. no tension shear forces are allowed to act at the pile tip.
This is a reasonable assumption for the soil forces acting against
the pile toe plate. The guantity kiqi is the ultimate shear resistance
force and is denoted by Si,o' A typical force versus displacement
relation resulting from the definitions in Equations 5.2 through
5.5 is shown in Figure 2.2 of Volume I,

The dynamic or damping resistance force, Di(t), is linearly

proportional to the pile velocity, v.(t), at x = X5+ Thus,

i

D.(t) = div.(t) | (5.6)

where di is a damping coefficient. Again, it is assumed that only
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compressive resistance forces act at the pile toe. Figure 2.2 of
Volume I shows the damping velocity relation graphically,

To investigate the validity of the above soil model, measurements
were taken during driving at the pile bottom end. Both force and
acceleration records are available. Also the pile tip force was
measured as a functionof pile penetration during a static load test.
The force was always recorded at some distance above the pile toe
plate to which the accelerometer was connected. From these measure-
ments the soil resistance force, Rg(t)s acting against the pile toe

plate during driving can be approximated by
Meey = \
R (t) = F(t) - Ma(t) (5.7)

where F(t) is the measured force, a(t) is the measured acceleration
and M is the mass of the pile below the point of force measurement,
Five representative records are selected for investigation. One
set of measurements - obtained from a reduced scale pile - is
typical for the soil response in coarse grained soils (see Table
1.3 of Volume I for the soil profile). Two records are from full
scale pile Ri-50 (see Chapters I and III of Volume I) where the soil
surrounding the pile tip was highly cohesive. The records were
obtained immediately after driving and also after a waiting period
of three days. In a similar manner records were taken on full
scale pile Ri-60. This pile had a high point resistance in a sandy

gravel layer at the bottom of the pite. Table 1.2 of Volume I gives




the soil profile for both piles Ri-50 and Ri-60.

5.2 Reduced Scale Pile In Sand

The discussion is illustrated in Figure 5.1. At the top of
this Figure, a plot is shown of both velocity, vn(t), and displacement,
un(t), as obtained by integrating the measured toe acceleration. The
measured resistance force Rﬁ(t), computed from Equation 5.7 is
plotted at the bottom of Figure 5.1. For further discussion the
index n is omitted.

The first remarkable observation is that RM(t) has its maximum
at the same time as the velocity v(t). Thus, dynamic forces seem
to be present. After its maximum the measured resistance force
decreases monotonically. This is in agreement with the decreasing
velocity and corresponds after zero velocity to the pile rebound.

The soil model under discussion requires three parameters to
describe the behavior of R(t) in tewms of u(t) and v(t). Thése
parameters (q, d and SO) give the theoretical resistance curve such
that 1t_agrees'with the measured curve at three points. Using the
same approach as in Chapter II of Volume I for finding the quake,
j.e. assigning the displacement at maximum velocity to be the quake,

leads in the example of Figure 5.1 to
g = 0.08 inch

With this choice only two parameters are lefi to be determined.




Selecting the time of both maximum velocity, tm’ and zero velocity,

to’ for obtaining agreement between measured and theoretical resistance

force, then

M -
R (tm) = Sn(tm) + Dn(tm)
and
M _ .
R (to) = S(to) + D(to)
However,
S(tm) = S(to) = SD
and
D(tO) =
so that
_ M
S0 = R (to)
and
D(t ) = Rt ) - S
M H c
Thus,
RM(tm) - s,
d = vltmi

In the example of Figure 5.1 the soil parameters become

5, = 6.75 (kip)
max D = 10.0 - 6.75 = 3.25 (kip)
d = 3.25/8.3 = 0.39 (kip-sec/ft)

Using now Equation 5.1 through 5.6 the theoretical resistance
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curve can be plotted. In Figure 5.1 both R{t) and $(t) are plotted
and can be compared with the measured curve. Since no negaiive
damping forces are allowed for the bottom end of a pile R(t) =

S(t) when the velocity v(t) is negative. The resistance curves

R(t) and RM(t) agree quite well before and at zero velocity. After
this time the theoretical curve decreases at a slower rate than
measured. Certainly, a smaller quake could match this portion of
the record better, however, such a change would also affect the
quality of the match before maximum velocity. Furthermore, the
resistance force is very sensitive to changes in either the quake or
the displacement during unloading. An error of 0.0T inches in the
displacement at the end of the record would amount to a difference
of the theoretical resistance force of 12.5% of the predicted
ultimate shear resistance. The displacement curve is not very
accurate for later times, therefore, not much accuracy can be expected
in predicting the quake from the unloading behavior.

To summarize the results obtained from this record: A maximum
damping force of approximately one half of the ultimate shear
resistance was found. The match between theoretical and measured
resistance force is good before zero velocity. The ultimate shear
resistance force S = 6.75 (kip) compares well with the point
resistance under the static load test which is plotted in Figure

6.6a. (7.3 kips at ultimate and 6.6 kips at maximum dynamic

displacement). Also soil stiffness and quake are in good agreement,
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5.3 Full Scale Pile in Cohesive Soil

Two records taken on a pile in a cohesive soil are shown in
Figures 5.2 and 5.3. The records were obtained before and after a
waiting period, respectively. " The following characteristics are
common to both records.

At time zero a force, Sp, can be observed which must be due to
the hammer precompression. For further considerations Sp is thought
of as a static force independent of velocity and displacement and is,
therefore, disregarded. (Sp = 3 kips in Figure 5.2). The resistance
forces show a steep rise together with the corresponding velocity.
After the maximum, the resistance force rapidly decreases to a
magnitude not much greater than Sp. Thereafter, an almost steady
strength increase can be observed. This strength increase corresponds
to the monotonically increasing displacment while oscillations in
the force show some relation to the velocity record.

The velocity shown in Figure 5.2 reaches no zero within the
time period considered but a small value at the end of the record.
Thus, defining to for this case to be the time of minimum velocity
the match shown in Figure 5.2 is obtained. The soil parameters,

thus determined, are:

g = .12 (inch)
5, = 15 (kip)
d = 1.24 (kip/ft-s)

This match is very poor immediately after the time of maximum




velocity. Several reasons can be responsible.

(i) The proportionality between damping force and velocity
holds only until the time &6 maximum velocity.
Immediately éfter this time damping forces become very
small.

(11) High pore water pressures are building up during the time
of the initial Toad application and are released slowly,
thereafter.

(iii} A strength increase can be observed throughout the
resistance force record, Since the velocity is positive
and decreasing this strength gain must be due to the
displacement gain.

Comparing Figure 5,3 with Figure 5.2 it is observed that higher
resistance forces were acting at the pile toe although the dis-
placements were smaller. Thus, a strength gain due to the waiting
period can be observed. A match was performed using the same
procedure as described before. The soil parameters thus determined

are

g = .096 (inch}
5, = 24 (kip)

d = 2.5 {(kip/ft-s)
RO = S0 + Sp = 29 (kip)

As in Figure 5.2 the predicted soil forces in Figure 5.3 are too

large after maximum velocity and agree quite well thereafter,



In Figure 5.6b are shown the two pile tip force versus pile

tip penetration curves obtained from static load test and correspond-
ing to the two records just discussed.

At ultimate the point resistance is 14 and 18 (kip) for the
cases in Figures 5.2 and 5.3, respectively. This compéres to 18 and
24 (kips) from the dynamic measurements. Thus, both dynamic

resistances are high by about 25 to 30%.

5.4 'Full Scale Pile with High Point Resistance

Two cases where the soil consisted of a very hard gravel and
sand layer are shown in Figures 5.4 and 5.5. The resistance force
shown in Figure 5.4 can be represented with a fair degree of accuracy
by the proposed soil model. A small difference occurs at the
second Tocal maximum of the RM(t) curve. A sensible explanation
is a further strength gain due to still increasing displacements.
Differences in the unloading portion are again due to the high
sensitivity of the soil model to small errors in guake and displace-
ments. This was outtined in Section 5.1.

A time lag between velocity and force {a measurement inaccuracy
discussed in Chapter IV of Volume II and Chapter IIT of Volume I
imposes problems on the match in the first portion of the record.

In Figure 5.4 this difficulty leads to determining the quake at the
time of maximum force.

A different way of matching was used in Figure 5.5; namely by
assuming that the quake is greater than maximum displacement and

then matching the maximum resistance values. The special feature of
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this record is the small displacements {Note the change in scale},
and the smooth resistance force curve. Except for a time lag due to
measurement difficulties the resistance force essentially follows
the behavior of the displacement curve. The fact that this pro-
portional relation holds throughout the record indicates that little
or no yielding occurred. Thus, the hammer did not supply enough
energy to overcome the soil resistance forces. Small damping
forces can be observed at the time of maximum velocity.

The static load tests corresponding to the records of Figures
5.4 and 5.5 had to be terminated before the ultimate load was
reached. However, the soil stiffnesses from static and dynamic
measurements can be compared. This is shown in Figure 5.6¢,
Apparently the soil offered a stiffer resistance during the dynamic
1oad app]icatjon than during the static test. Such a loading rate
dependent behavior can be expected. It is interesting to note that
the soil lost stiffness during the waiting period; an effect which is

reflected in both dynamic and static measurements.

5.4 Summary

The following conclusions can be drawn from the records presented
in Figures 5,1 through 5.5,

The present soil model describes the force versus displacement
and velocity relation fairly well for granular soils. The unToading

portion, however, is difficult to match, although the model might

still hold.




Cohesive soils present characteristic resistance force patterns

which cannot be described by a simple spring - dashpot model.

Further studies on how to model such soils must be conducted,
including other independent variables like pore water pressure or
soil dynamic effects. The prediction of static capacity from dyramic
records can give good results for piles driven into granular soils.
In the cohesive soils as in Figures 5.2 and 5.3 it is seen that the
shear resistance forces vary throughout the records and no indication
is given of the static resistance. A more realistic soil model could
improve this situation. In Chapter IV of Volume I further discussion
of this problem is given with respect to the results which can be
expected by employing the present soil model in a wave analysis.

It should be noted that an average value of the measured soi]
resistance curve immediately after the maximum leads to a reasonable
answer. One important observation is made when studying the dynamic
and static load versus penetration curves plotted in Figures 5.6b

and 5.6c. For cohesive soils a strength increase is observed during

the waiting period. The soil stiffness decreased, however, for the

granular material. These effects were measured both dynamically
and statically, thus, justifying the proposed method of taking dynamic
measurements after a waiting period in order to obtain meaningful

predictions on the static pile behavier.



CHAPTER VI

SimpTlified Methods for Predicting Static Bearing Capacity

6.1 Introduction

It was indicated in Chapter I of Volume I that effort was devoted
to the development of a simple method for predicting static bearing
capacity. Such a method, utilizing in a special purpose computer,
would display, in the field, the prediction within a short time
after the hammer blow. Thus, decisions could be made to control the
driving operation. In the following, two previously developed
methods (8) are briefly reviewed. These methods were based on a
rigid pile model. Using wave considerations, i.e. employing an
elastic pile model, two new computation schemes are derived. Results

from all methods are given in Chapter III of Volume I.

6.2 Rigid Body Models

Suppose, a rigid body of mass M is acted upon by a force F(t),
and a resistance force R(t}. If the acceleration of this mass is

denoted by a(t) then the static bearing capacity, Ro’ is given by
Ry = F(to) - M a(to) (6.1)
where to is the time of zero velocity. The derivation of Equation

(6.1) is given in Chapter I of Volume I. The sign convention is

shown in Figure (6.1). Equation (6.1) is referred to as the Phase I
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prediction scheme.

The results obtained from the Phase I prediction scheme were
promising when compared with the maximum bearing capacity determined
in the static load test. However, the results differed substantially
from blow to blow and it was found that small changes in t, often
caused large differences in the predictions. Figure 6.2 illustrates
this sensitivity of R0 to changes in to' in this Figure the measured
acceleration and the velocity and displacement obtained by integration
are plotted., Also, the measured force and the resistance, R(t),

are shown where
R(t) = F(t) - ™ a(t) (6.2)

The point of zero velocity is indicated by a dotted line in the
force diagram. If this point of zero velocity were shifted only

a small time increment {due to measurement inaccuracies such a shift
is always introduced) then predictions ranging from 150 to 200 kips
could be obtained.

This defect of the Phase I prediction method led to an averaging
method referred to as the Phase II prediction scheme. Consider the
velocity graph in Figure 6.2. A straight Tine marks the trend of the
descending velocity curve. Using the slope of this Tine instead
of a(to) in Equation 6.1 the new prediction scheme becomes

't]_ + AT
~ M
R, = F(to) - 5T a(t)dt (6.3)
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where t, was chosen as the time of maximum velocity and the average
was taken until the time of zero velocity (t; + aT = to). As a

result of the averaging procedure, the variations in the predictions
from blow to blow were relatively small.  Another method was proposed
where the force F(t) is also time averaged, however, results were

Tittle affected because of the relatively smooth force records.

6.2 Elastic Pile Modeéls

The above methods used a rigid body as a pile model. To explain
and clarify limitations on these methods the traveling wave solution
of the linear, one-dimensional wave equation is utilized.

(i) Phase IIA

In Chapter III relations were developed by which the pile top
velocity, vtop(t), can be expressed as a function of external forces,
In particular, if a force, FA(t), 1s acting at the pile top then

Equation 3.27 can be used to compute v, (t). Simitarly, Equation

top
3.29 expresses the pile top velocity as a function of a resistance
force Ri(t) acting at x = ¥; and time t at the pile in the upward
direction. If it is assumed that n resistance forces act along the
pile together with the force applied at the pile top, Then the
resuiting pile top velocity can be calculated by superimposing the

solutions from Equations 3.27 and 3.29. Thus, with r indicating the

time interval considered, i.e. r

]
oy T

<t<{r+1)2/c,
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r
cC
3 FA(t) + ZJE]FA(t - J—-E

Vtop(t)

—k 32 (6.4)

It is assumed now that the resistance forces, Ri(t)’ are only
due to shear. Effects of dynamic resistance forces will be included

later. Therefore,
R; () = s,(t) (6.5)

and using the simplified expression for a shear force as given in

Section 3.5, Equation 3.46, then

R; (t) = s,

X
1
io H(t - _E) (6.6)

which means that the quake is assumed to be zero. Inserting Equation

6.6 into 6.4 yields

() = SR (6) + 27 Fy(t- 325y - ¥ T s, H(t zxk
v = + - Jm - e ——
top EAY A 51 A c K21 550 k,0 c
2L 2L 2L
-3 + Sk,oH(t - = - 55 (6.7)
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Now, two different times, t, and t,, are chosen so that

t, = £, + 2L/c (6.8)

therefore, if Pg%_i tp < (r + 1)2L/c then (r + 1)2%_i_t2 < {r+ 2)3%

is

The difference between the velocities at both times, Avtop’

Avtop = vtop(tz) top( ) = c/EA[F (ty + 2L/¢c) - Fplty)
r r+] 9|
-2 ] Fplty - Jw*J *27 FA(tl + 2L/c - 3=
J:] J"
n r
2L 2L 2L
- k§1 ng RUICEE 2x /e - j=g) H(ty - — - =)

r+1 2L
“Zo S0 St - 2% /¢ - (§ - 1)2l/c) + H(ty - j5= =21

+

(6.9)

This expression can be simplified to yield
n .
MViop = c/EALF, (t; + 2L/c) + Falti) - k§1[sk90{H(t1 - 2%, /¢
+2L/c) + H{t)]] (6.10)

The arguments of the step function terms on the right hand side of

Equation 6.70 are non negative so that

AV

]
top = c/EA[FA(tz) + FA(tl) - 2 kg]sk,o] (6.11)
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which can be written as

.Avto. J:‘EA:FA(tZ)‘FFA(tl) n

2l7c ¢ ¢ 2 ) k£1 Sk,0 (6.12)

However, cZ = E/p and Alp = M, M being the mass of the pile. In
addition 2L/c = AT, i.e. the time between t; and t,. Thus, with

N

k§1 Sk,o *R

[
R, = 1/2(F,(t1) + Fplt2)) - Fp | al(t)dt (6.13)
t1
Equation 6.13 establishes a simple method for computing the static
bearing capacity, RO, if the force and the acceleration at the pile
top are known, Because of the similarity between Equations 6.13
and 6.3 this method is referred to as the Phase IIA prediction
scheme,
Two differences can be observed between Equations 6.13 and
6.3. First, the force term has to be calculated as an average of the
forces where the acceleration average starts and ends. The second
difference is the need of restricting AT to exactly 2L/c.
In order to understand the actual meaning of the results obtained
by applying Equation 6.1, Equation 6.7 has to be differentiated with
respect to time and the result, the acceleration of the pile head,

substituted into Equation 6.1.
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r d.F (t - 3 N
) - e 1t
- jL .
- 25.'5-3-1—) v 6(t - 2L;__E_ll)t}] (6.14)

where s(t - a) stands for the Dirac s-function which is zero for t#a.

Inserting 6.14 into 6.2 and avoiding times t such that

Xa -~ jL
R
ty = ¢ for j = 0,7,...,rand t = 1,2,...,n
2‘(3‘ + 1)L
C
yields at t = to
o dE(t)  p dR(E, - 33-‘:
R, = F(to) - Ve [_-.-a—--a— 2 g G 7 (6.15)

The second term consists of the slopes of the force record taken

at time intervals of 2L/c. These slopes of the force record change
rapidly over short times due to vibrations in the hammer cushion
system (see Chapter IV). Therefore, it is not surprising that the
results from the Phase I method showed a Targe change whenever the
time to was changed by small amounts.

In deriving the Phase IIA prediction scheme dynamic resistance
forces were not considered. Such forces can be thought of as being
Tinearly proportional to the pile velocity. Thus, Equétion 6.13
is only applicable at all time pairs t; and t, if either the dynamic

resistance forces are jdentically zero because of special soil pro-
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perties or the pile is not moving. Practically, there exists no

case of pile driving without velocity dependent forces and the pile

motion ceases only after the pile has rebounded and also shear forces

reached zero. However, due to the negative particle velocities of
waves caused by resistance forces the velocities along the pile are
usually small - positive or negative - when the pile top velocity
has reached zero. For this reason a good approximation to the

prediction of static resistance forces can be found if t, is chosen

to be the time of zero velocity at the pile top and t, at a time 2ZL/c

later.

In analyzing field measurements it was frequently found that
zero velocity was not reached even for long times after impact.
This non-negative velocity can be explained due to measuring in-
accuracies as explained in Chapter IV, In such cases a prediction
can be obtained by taking t, as the minimum velocity encountered.
Since only the difference velocity between t; and t, affects the
result no major error is introduced into the computation.

(i1) Phase III

The studies on wave propagation in Chapter II of Volume I and
in Chapter III of Volume II showed that the Measured Delta curve
reflects the effects of soil resistance forces at the pile top.
Figure 2.5, 6, 7 of Volume I show three such measured Delta curves.
Also Resistance Delta curves were investigated which display an
approximate pile top force effect of a certain resistance force

acting at some point along the pile.
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It is now intended to show how the concept of Delta curves
can be used to obtain a simple computation scheme for predicting
static bearing capacity. In such a simplified analysis it is not
possible to find where the resistance forces act. Therefore, the
portion of the Measured Delta curve with t <t + 2L/c (tm being
the time of maximum velocity at the pile top) is of minor interest.
However, important information regarding the total amount of static
and dynamic resistance forces can be obtained from the Measured
Deita curve for tm +2L/c <t 5_tm + 4l/c.

A first assumption in the derivation of the Phase III prediction
scheme s to neglect any influence of skin damping forces. That
this assumption is at least a good approximation is proven by the
results in Chapter III of Volume I. Next it will be shown how the
Measured Delta curve can be modified such that the effect of skin
shear forces can be converted to an equivalent effect of pile tip
forces. This then will reduce the prohlem to a pile with only pile
toe resistance forces.

Consider Figure 6.3a which shows a theoretical Delta curve for
a shear force Sn,o acting at the pile tip. (Such a theoretical
shear force is discussed in 3.5). A shear force having the same
magnitude acting at x = X; produces a Resistance Delta curve as shown
in Figure 6.3b.  The difference between these two Delta curves is the
earlier pile top effect of the upwards traveling wave generated by
the skin force. A modified Delta curve can be obtained by delaying

the earlier effects by a time 2(L - xi)/c, Figure 6.3c illustrates
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this procedure. Analytically, the Modified Delta curve can be
obtained from the Measured Delta curve, A(t), and the pile top
velocity, VA(t), using

..VA(t - 4L/c)
Amod(t) = a(t) + alt - 2L/c) - 1/2

TV, A(tm + 2L/¢)
(6.16)
which is valid for tm +2L/c < t f-tm £ 4L/c, and only if.skjn forces
are of the step shaped type as in Figure 6.3. The third term in this
equation is necessary for not delaying effects of the already
returning waves after reflection at the bottom end, (This is a
similar approach as used in the derivation of Ared(t) in 3.6}, In
further derivations of the Phase III method the subscript "mod" is
dropped and it is understood thatré(t) means the modified Delta curve.
If all resistance forces act at the bottom end of the pi1e then
. their effect can be felt at the pile top at a time L/c later. Thus,

the Measured Delta curve is given by
a{t) = 2[Dn(t - L/c) + Sn(t - L/c)] (6.17)

where the notation of Chapter III s used. The velocity of the pile
tip that results from the velocity VA(t), imposed on the pile top
and from both shear and damping forces acting at the tip is given

by




;-2VA(t-*‘L/C)-— (c/EA)S,

5

v, (t) T¥ ¢ _JER (6.18)

where Sn 4 8s defined earlier is the ultimate shear resistance at
the pile top. (This is Equation 3.43 derived in 3.5). Equation 6.18

is valid for L/c < ¢t i.tn o i.e. after the quake is reached until

the pile tip velocity becomes zero and unloading starts. The time

tn o i.e. the time of zero velocity at the pile tip, can be determined

from Equation 6.18

Vn(tn,o) =0 = ZVA(tn,o - L/c) - ((:/EA)SHS0 (6.19)

However, S can be expressed in terms of the Measured Delta curve

n,o
by using Equation 6.17 and by observing that at time t o damping

is zero ahd Sn(tn,o) = Sﬂ,O' Thus,

QVA(tn,o - L/c) - (C/ZEA)A(tnso +L/c) =0 (6.20)
or rewritten
alt.  +L/¢) = 4Ry (v <L/ (6.21)
n,o c A*n,o :

Equation 6.21 shows how to find the time of zero velocity at the
pile tip from pile top velocity and Measured Delta curve. A comment
is appropriate. Suppose that the pile had a fixed bottom end (this

is the condition which yields the largest possible pile resistance



forces assuming that there are no forces acting at the pile which

could produce a negative pile permanent set). At a fixed end
reflection waves are generated such that no movement occurs. This
constraint requires a reaction force, Rf(t), of twice the magnitude

of the forces in the wave. Therefore,
R.(t) = 222y (¢ - L/c) (6.22)
f c A ‘

if it is assumed that the only wave arriving is due to the hammer
impact. The Measured Delta curve resulting from a fixed end is
then

a(t) = 4R v (¢ - 21/0) (6.23)

Hence, whenever the Measured Delta curve exhibits a value four
times larger than the force proportional velocity at a time 2L/c
earlier then no motion of the pile tip will occur at a time L/c
earlier. |

In the usual case of pile driving a motion of pile will always
occur before the fixed end condition, Equation 6.23, is satisfied.
Such a motion is necessary to activate the resistance forces. Once,
however, the resistance forces have reached a value large enough or
once the applied velocity, vA(t - 2L/c), becawe small enough then
Equation 6.21 will be satisfied. (An exception is the case where

the hammer applied forces are so large that the motion will not
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cease before time t - 3L/c; this case will be discussed later).
Once the time of zero velocity at the pile tip has been
determined, the ultimate shear resistance force can be found using

Equation 6.17
1
S0 “'?A(tn,o + L/¢) (6.24)

Also, the maximum damping, max D, force which acts at the pile
tip at the time of maximum tip velocity can be found. Since the
effect of the maximum pile tip velocity is felt at time T+ 2L/c

at the pile top one obtains again from Equation 6.17
max D = A(tm + 2L/c)/2 - Sn,o (6.25)

To illustrate the prediction scheme as developed so far a
computation example is given. The acceleration and force record
used is the same as in the computation example in Section 3.7. In
Figure 6.4 both Measured and modified Delta curve are shown together
with the force proportional to velocity and the curve obtained by
multiplying the velocity by 4c/EA and shifting it over 2L/c. The
point where both cufves intersect is at a time 3.81 L/c and at a
Delta curve value of 292 kips. This intersection represents the

solution to Equation 6.21. The maximum Delta is 422 kips; thus

[0
1t

n.o = 146 (kip) (from Equation 6.24)

max D = 65 (kip) (from Equation 6.25)
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The precompression force, Sp = 41 kips, had to be subtracted in this
method as well as in the wave analysis (see Chapter 111) so that the

prediction of static capacity becomes:
R0 = 146 + 41 = 187 (kip)
For the same record analyzed by wave analysis the results were:

R, = 198 and max D = 52 (kip).

Special consideration was necessary for cases with low driving
resistance in the Phase IIA derivation. In such cases no zero
velocity was encountered at the pile top throughout the analyzed
record. A similar difficulty can arise in the Phase III method.
Suppose, that tn,o > 3t/c+ ty then the fixed end condition 6.23
is not satisfied within the considered time interval (t < 4l/c +
tm). An approximate prediction scheme for such cases is to neglect
presumably small dynamic force effects at the pile top at time
3L/c + tm (the maximum damping effect is displayed in the Measured

Delta curve at time 2L/cC + tm)° This assumption is derived from

studies at piles with Tow shear resistance and relatively high damping

as-discussed in Chapter V. In order to avoid using a local extreme
value for predicting the ultimate shear resistance an average Delta

js taken over some time before and atter tm + 3L/c. Thus,
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tm + 3.5L/c
So 1 ”“%‘[' A(t)dt (6.26)
tm + 2.5L/¢

An example to this computétion scheme 1s given in Figure 6.5,
It can be observed that (4£A/C)VA(t - 2L/c) is always greater than
a{t), within the time interval total/c<t <t 4L./c. The

predictions, taken from Figure 6.5 are:
max D = 72 and Sp.o = 46 (kip).

The Phase III method is used as an initial estimate on the
magnitudes of shear and damping forces in the wave analysis,
discussed in Chapter II of Volume I. Table 6.1 gives the results
from both Phase III and the predictor analysis for the cases discussed

in.Chapter III of Volume I. It can be seen that the Phase III

method gives good results in most cases.




CHAPTER VII

Computer Program

In the following a brief description is given of the comp-
uter program used for predicting the soil resistance forces from
measurements of both pile top force and acceleration. The program
is demonstrated using block diagrams and short descriptions, Only
the main features of the program are discussed. Emphasis is placed
on a description of both 1nput‘and output.

The program consists of two parts. The first part is an
ALGOL 60 routine employed for reading the dynamic data and the pile
parameters. All necessary arrays are declared in this program, thus,
dynamic allocation is possible.

The second part of the program consists of several FORTRAN V

subroutines. A subroutine MAIN controls the actual computation process.

1. ALGOL Program PREDIC

One force record and two acceleration curves (see MAIN) are
needed as dynamic input. The continuous records are digitized by
placing points on the traces such that Tinear interpolation between
these points closely resembles the original record. Both the time
and the function values are then determined in units of 0.02 (inch).

Frequently, the portion of the record before impact (the
acceleration is still zero while the force is already increasing as

shown in Chapter IV is long. It would be unreasonable to include
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this portion of the record in the dynamic analysis. Therefore, an

input parameter SUB is included which is the time at which to start

the dynamic computations. Also, the maximum time is Timited by an

input value MAXT.

The following input is necessary:

N1,N2,M

$1,52,53,54

SUB ,MAXT

UAT,UAZ

UF,UT

MASS
AE,LE

TF(J)
FO(J)
T1(J)
AT(J)
T2(J)
A2{J)}

The number of values of the first acceleration,
second acceleration and force trace, respectively.
Four string variables describing pile, blow,

soil, and transducers, respectively.

Time at which to start and terminate computations,
respectively.

Calibration constants for first acceleration (A7)
and second acceieration trace (A2), respectively.
Calibration constants for force values and

length to time conversion, respectively.

Mass of pile

Cross sectional area and length of pile,
respectively.

Force time vector in units (J = 1,2,...,M).

Vector of force values in units (J = 1.,2,...,M).
Accel. -1 time vector in units (J = 1,2,...,N1).
Vector of accel. -1 vaiues in u's {J = 1,2,...,N1).
Accel, -2 time vector in units (J = 1,2,...,N2),
Vector of accel, =2 values in u's (J = 1,2,...,N2).
(If N2 = 0 then no values for T2(J) and A2(J)

have to be given),



Procedure:

From MASS and LE together with ¢ = 2 and N = 10_(N being
the number of elements to be used in the lumped mass analysis) the
time increment DET is computed (see Chapter I). From the total
time interval {(MAXT - SUB) one obtains NT, the number of time

increments necessary. PREDIC now calls MAIN.

2. FORTRAN Subroutines
MAIN controls the computation .process. The following subroutines

are called:

ANALYS For lumped mass analysis (see Chapter I}.
DISTRI For computing shear resistance distributions.
LEASTS For performing a Least Square Analysis.
PILEPL For plotting results.

RESIST For finding soil resistances (Eqs. 3.30, 38).
SMOOTH For smoothing a given function.

STATIC For finding a theoretical load versus

penetration curve Gee Chapter II).
In the following these subroutines and MAIN are discussed in
more detail.
(a) ANALYS (see Chapter I}
Problem: For given pile top acceleration (velocity, displacement),
pile properties and resistance force parameters find the

pile top force and displacements along the pile.
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Input: A(T,d) Pile top acceleration {J = 1,2,...,NT}
V(1,3) Pile top velocity (J = 1,2,...,0NT)
D{1,J) Pile top displacement (J = 1,2,...,NT)
K Element stiffness
MA Element mass
N Number of pile elements
NT Number of time increments
Procedure: see Block Diagram
START
[
J=1
%‘ 1 J =+ l
Resist Do Euler Prediction
g |
|
Resist T Compute Newmark correction

ER= Newmark-Euler
Newmark

“‘-'-\_‘_"—"i

Euler=Newmark
|




(b)

Problem:

Input:

Procedure:
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DISTRI (see 3.6)
Compute corrections on predicted shear resistance forces
and damping coefficients for given Error Delta curve

and displacements and velocities from corresponding analysis.

DN(J) Error Delta curve

RE(I) Previous ultimate shear resistance forces
co(I1) Previous damping coefficients

ITIME(I) Time value at which full effect of ultimate

shear resistance RE(I) can be felt at pile top.

Y(I1,d) Velocity of i-th element at time J*DET
D(1,J) Displacement of i-th element at time J#DET
DAMP(1) Damping force to effect pile top at time
ITIME(I)..
DET Time increment
NGNT As introduced in PREBIC
J=1,2,... T I=1,2,....N

Compute C- and E-Matrix. Compute differences AD between
proposed and actually obtained damping forces. Reduce Error
Delta curve by AD effects. Reduce Error Delta curve by the
effects of returning reflection waves due to shear forces.

Compute corrections on ultimate shear resistance forces

and find new damping coefficients.




{c) LEASTS

Problem:

Compute coefficients Al, A2, A3 such that

and

‘Where

Input:

Procedure:

Qutput:

(d)

Problem:

Input:

DN1(J)
DN2 (J)
DN3(J}
DET
NT

‘ I{A(t)}zdt becomes a minimum
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Al + A2 + A3 = 1]

A(tj) = AT¥DNT(9)+A2%DN2(J) +A3*DN3(J)

Error Delta curve for first damping distribution

Error Delta curve for second damping distribution
Error Delta curve for third damping distribution

As in PREDIC

As in PREDIC

J = T1,2,...,NT

Generate a weighting function w(t).

Set up Normal Equations.

Solve Normal Equations.

Al, A2, A3.

PILEPL

Plot measured and predicted pile top force as a function of

time.

FTOP(J)

F(1,3)

NT

Measured pile top force
Predicted pile top force
As introduced in PREDIC
d = 1,2,...,NT



e TS o

109

(e) RESIST (see Equations 3.30,38)
Problem: Compute shear and damping resistance force for element

INOW at time JNOW*DET.

Input: INOW Element number
JNOW Time increment number
RE ( INOW) Ultimate shear resistance of element INOW
QO ( INOW) Quake of element INOW
CO(INOW) Damping coefficient of element INOW

V{INOW,d) Velocity at element INOW
D{INOW,J) Displacement at element INOW
J=1,2,...,JNOW
Procedure:
Solve Equation 3.30.
Solve Equation 3.38.
Qutput:  RESI Shear resistance at element INOW and time JINOW*DET
DI Damping resistance at element INOW and

time JNOW*DET.

(f)} SMOOTH

Problem: Time average a given curve to obtain a smooth curve.

Input: ROUGH(J)  Original function.
ISTART First value of ROUGH to be included in smoothing.
ISTOP Last value of ROUGH to be included in smoothing.
ITVAL Time interval DET*ITVAL is to be used as interval

over which to integrate for smoothing. 0dd integer




Procedure:

Output:

CuT Option: CUT = T means no change of function

before ISTART. CUT = 2 means set all function

values to zero before ISTART.

Integrate ROUGH over time interval ITVAL*DET and divide

vesult by ITVAL*DET. This yields the new function value

at the middle of the time interval. The new function is

called SMOOTH.

SMOOTH (J) New smooth function between ISTART and ISTOP.
Either SMOOTH(J)

H

0
for J < ISTART
ROUGH(J)

or SMOOTH(J)

and SMOOTH(J) = ROUGH(J) for J > ISTOP

il

{(g) STATIC (see Chapter II)

Problem:

Input:

For given static soil resistance parameters and pile

stiffness compute static load versus deflection curve.

RE(I) Shear resistance force at i-th element
Qo(I) Quake at i-th element

K Stiffness of pile element

N As introduced in PREDIC,

I=T1,2,...,N
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Procedure: see Block Diagram
START

I
Set up pile stiffness

matrix
J =1
5

Impose P' on pile top

Compute pile deflections
X'(I) for all elements

Find element where a
soil spring yields
first

Compute pile top force P(J
and pile top deflection X(
for first yield.

)
J)

Modify pile stiffness
matrix

Jd=3J+ 1
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(h) MAIN (see Chapter III)

Problem: For given pile properties and both measured force and
acceleration find shear and damping resistance distribution
for a best match of predicted with measured top force,
Also, predict static load versus deflection curve, Plot
and print pile top forces both measured and predicted.
Print predicted pile displacements, velocities and forces

betow pile top.

Input: A1{J) Acceleration 1
measured at opposite sides
A2(J) Acceleration 2 of pile
FTOP(J) Measured pile top force
DET Time increment
N Number of pile elements
NT 7 Number of time increments
LE | Length of pile
AE Pile cross sectional area
MASS Pile Mass
Procedure: see Block Diagram

"Prepare" stands for the following manipulations:
Use E = 30.8 (psi) and compute pile element stiffnesses K.
Compute element mass MA. Average both acceleration curves.

Integrate acceleration twice. Subtract precompression force

from force record.
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START

Prepare

Compute Measured Delta
Smooth

Apply Phase III

L=
i: e. all damping at toe

Compute Soil Paramelers
Analys

Compute Error Delta
Smooth

Correct Predictions

COUNT = 1

gt COUNT = COUNT + 1]

* Analys
Compute Error Delta

Smooth

Compute E;, E;, E3
4
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Use previous solution
Relax CRy

)

E,<CR,» E;CR2

" |

Change total damping A

— [ )
_ﬂ“‘““‘*wnwﬁ_ﬁ

J

¥

Plot and print
I — Change toe resistance

L=1L1L+1 I
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Compute uniform damping
|}

Compute one skin damper

I
H

COUNT = 1

Leasts
Analys
Static

Plot and print

END
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CUSHION STIFFMESSES k in kips/inch

Applied Force Transducer Oak 15/15/5 Phenotl
kips 3-4 5-6 (Detmag D-12) 11" /2.5"
Link Belt 440
100 4,600 3,500 1600 .- 8,600
150 7,250 5,500 2400 9,300
200 10,000 8,000 3300 11,600

WEIGHTS of RAM and ANVIL in kips

Ram and Anvil Capblock and Adaptor

Delmag D-12 3.50 1.20
Link Belt 440 Y - 1.10

TABLE 4.1 : CUSHION STIFFNESSES AND HAMMER WEIGHTS
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MAXIMUM DAMPING FROM
DATA SET NO. PHASE 111 © ANALYSIS
kips. kips
3 14 15
5 a4 50
6 25 23
7 40 41
8 60 52
9 42 25
10 65 57
11 13 17
13 44 57
14 57 88
15 68 70
16 98 106
17 . 55 54
18 102 125
19 65 58
20 59 61
21 80 87
22 67 106
23 | 96 93
24 a4 48

TABLE 6.1: COMPARISON OF MAXIMUM DAMPING FORCE AS PREDICTED
FROM PHASE IIT AND FROM WAVE ANALYSIS
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A. DAMPING FORCE Dj(t) C. DAMPING FORCE Dp(t)
AT x=L/2 AT =L
2 2
EA - A -
B “‘“‘j_m“__Lm_ [
T 2 3 4 2 3 4
L/C L/c
—___
@® ®
Te o
(&
8. DELTA CURVE FOR Dj(¥) D. DELTA CURVE FOR Dn (1)
2 27
EA B e N EA -
| |-
| 2 3 4 I 2 3 4
L/C L/C

URE 3.5: RESISTANCE DELTA CURVES FOR DAMPING WITH CONSTANT VELOCITY AT PILE TOP
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RESISTANCE DELTA CURVES

Aj_g (1) e
Al

Ai (1)
A2.
A3.
A4,

MEASURED DELTA CURVE

B. A(Y)

FIGURE 3.6: PREDICTION OF SHEAR RESISTANCE FORCES FROM MEASURED

DELTA CURVE IN ABSENCE OF DAMPING FORCES
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FIGURE 5.1: SOIL RESISTANCE FORCES AT PILE TIP 6-T-20,
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FIGURE 5.6: RESULTS FROM STATIC AMD DYNAMIC PILE TIP MEASUREMENTS
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A. SHEAR AT BOTTOM END

B. SHEAR AT x=L/4

2_

| N

Sio

!

L/C
C. MODIFIED DELTA CURVE
e %_“Z(L“Xi)/c y
E—
M)
I 2 3 4

FIGURE 6.3: MODIFICATION OF RESISTANCE DELTA CURVE FOR SKIN
SHEAR FORCE TO PRODUCE EQUIVALENT DELTA CURVE
FOR BOTTOM SHEAR FORCE
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