Comparative Pile Study by G.E. Likins, Jr. and M. Hussein H, pipe, concrete and monotube piles were competitively tested. Results of dynamic testing using a diesel hammer with a 7 kips ram indicate significantly better performance during restrike; comparison of wave traces indicates preignition at the end of driving. Blow counts were very high. Stresses of 34 ksi and 4 ksi caused pile top damage for pipe and concrete piles, respectively. At 45 ksi, the weld in the monotube failed (see figure). Even though the soils were completely dry, restrikes at one day showed about a 20% setup increase in capacity. Projection of these results to 30 days using a log time graph gave very good correlation with the Davisson failure load for the pipe, concrete and monotube from a static test at that time delay. Although these displacement piles had good agreement, the H pile using the same technique was low by about 50% of the actual increase, perhaps due to geometry (two flanges only during driving - perhaps plugged - compared with four sides after soil pressures are equalized) or driving into a different soil layer with different time dependent properties. Comparison of Davisson with the slope method $(0.05^{\circ\prime\prime})$ ton) failure criteria shows the Davisson value to be 7.5% lower than the slope criteria on the average. The displacement at the slope criteria is twice that at the Davisson limit. REF: PAPERSOO1.28 Table 1 Summary of Static Load Tests | Pile | Davisson's
Failure Load
kips | Double Tangent 🐣
Method
kips | Maximum
Applied Load
kips | |-------------|------------------------------------|------------------------------------|---------------------------------| | TP1 | 880 | 990 | 1050 | | TP2 | 1460 | 1400 | 1420 | | TP3 | 1270 | 1240 | 1260 | | TP4 | 760 | 820 | 860 | | TP5 | 730 | 990 | 1040 | | TP6 | 950 | 1050 | 1080 | | TP7 | 970 | 1190 | 1230 | | TP8 | 626 | 650 | 680 | | TP9 | 690 | 670 | 680 | | | | @ 0.05 "/TON
(Quick Load) | | | RE:GA009.40 | | (Quick Load) | | * General , at about twice the DAS CM with displacement. Table 2: Summary of Processing Results | Pile | Data | Average
Maximum
Energy
Ft-kip | Average
Maximum
Force
kips | Bearing C
Case M
J=O
kips | | Blow**
Count
Bl/ft | |------------|--------------|--|-------------------------------------|------------------------------------|---------------------|--------------------------| | TP1*** | EOID | 15.0 | 760 | 700 | 475 ,3 | 86 | | TP2 | B01R | 20.6 | 887 | 830 | 618 | 180 | | TP3
TP3 | EOID
BO1R | 8.9
21.4 | 544
900 | 649
897 | 548 , 3
700 , 25 | 307
237 | | TP4
TP4 | EOID
BO1R | 12.4
25.2 | 524
677 <u>24</u> 853 | 552
677 | 509 /2
640 /1 | 783 TO 10 10 40 64 | | TP5 | B01R | 20.9 | 604 | 610 | 573 | 322 | | TP6
TP6 | EOID
BO1R | 10.6
11.8 | 621
752 3 kg/ | 812
722 | 568 .} | 292 | | TP7 | EOID
BO1R | 13.1
22.3 | 705
997 4 KSL | 665
770 | 531
638 | 675 11 June 104 16 | | TP8 | EOID | 14.7 | 529 | 527 | 484 | 112 | | TP9 | EOID | 15.7 | 533 | 537 | 487 | 111 | ^{*} Refer to the text in the report for the appropriate J value used in each case. Ref:GA009.30 (5.5) ^{**} Equivalent blow counts in blows per foot. ^{***} Values listed are field results measured at a penetration of 43.5 ft (final depth was 45 ft). Table 3: Summary of CAPWAP Results | Pile Data | | Ultimate Bearing Capacity | | Damping Parameters
Case Smith | | | Qua | Quake | | | |------------|--------------|---------------------------|-------------|----------------------------------|------------|------------|--------------|--------------|--------------|-------------| | | | Skin
kips | Toe
kips | Total
kips | Skin | | Skin
s/ft | Toe
s/ft | Skin
inch | Toe
inch | | TP2 | B01R | 437 | 225 | 662 | .35 | .08 | .049 | .022 | .13 | .27 | | TP3
TP3 | EOID
BO1R | 326
360 | 228
276 | 554
636 | .35
.37 | .10
.10 | .066
.063 | .027
.022 | .09
.07 | .12
.07 | | TP4
TP4 | EOID
BO1R | 77
100 | 431
530 | 508
630 | .25
.12 | .50
.50 | .092 | .033
.027 | .10
.15 | .18
.30 | | TP5 | B01R | 103 | 515 | 618 | .20 | .40 | .055 | .022 | .16 | .26 | | TP6 | B01R | 107 | 434 | 541 | .10 | .30 | .087 | .065 | .10 | .15 | | TP7
TP7 | EOID
BO1R | 225
302 | 304
318 | 529
620 | .20
.18 | .20
.16 | .078
.052 | .058
.044 | .20
.25 | .22
.30 | | TP8 | EOID | 372 | 83 | 455 | .60 | .15 | .030 | .034 | .08 | .08 | | TP9 | EOID | 404 | 66 | 470 | .063 | .01 | .033 | .030 | .10 | .10 | Note: End bearing is associated with the pile toe or tip. These terms are used interchangeably. Figure 2: Two soil borings showing the soil conditions at the site. 1000 HEST POPOGONI-18. TEST PILE 7. BOLD J 1000 HEST PAPAGOVI-10. TEST PILE 3. BOIR HEST PAPAGOVI-19, TEST PILE 7, EOID Figure 5: Plots of force versus time records measured at opposite sides of Test Pile 7, end of initial driving. The difference in magnitude between the two traces indicate nonuniform impact stresses. Figure 6: Plots of pile top force and velocity versus time showing the records for the last two blow of driving Test Pile 9: top figure undamaged pile, bottom figure damaged pile. $\frac{2x}{c}$ = 3.59 msec; x = 30.16 ft, c = 16800 ft/sec Pile damage occurs at approximately 15 feet above pile tip. ## 1984 ## PDA USER'S DAY STOCKHOLM, SWEDEN May 24 - 26, 1984 Comparative Pile Study By Garland E. Likins, Jr. and M. Hussein CAPWAP/ C Description and Development Hammer Performance Measurements By F. Rausche and G.E. Likins, Jr. Relaxation of H Piles in Shale By Garland E. Likins, Jr. and M. Hussein