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Abstract.

Constructing deep foundations is both an art and a science and their as-built acceptance should
be based on evidence of quality confirmed by testing. Early prevention of problems is the most
effective means to avoid costly and time consuming construction delays. Recent developments
in equipment and methods aid in real-time monitoring of various pile installations.

For driven piles, monitoring of diesel hammers has been done for years using the
Saximeter. The measured kinetic energy of any hammer type can now be transmitted by
telemetry to the Saximeter unit and stored electronically in an installation log for downloading or
computer printout.

Traditionally, the Pile Driving Analyzer (PDA) is used by an experienced engineer who
collects and interprets measurements on the construction site, and later issues a report after
returning to the office. The engineer’s travel and availability often dictates the testing schedule
and impacts the construction activity. Utilizing wireless cell phones, dynamic pile testing can
now be done remotely at the contractor’s convenience with substantial cost savings and even
more substantial time savings. In the office, the PDA engineer receives and simultaneously
views the measured data in real-time, immediately analyzes the data, and summarizes the
monitoring results, often issuing the test report within hours of the test. Thus, the foundation
installation and quality assurance testing proceed without interruption or delay.

Devices are available for auger cast-in-place pile installations to guide the contractor in
real-time to installing a good pile with documented quality so that it can be accepted without
doubts or time delays. The paper describes these new monitoring devices and illustrative
experiences from actual project sites. Recommendations for use and future developments are
made.
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Real-Time Monitoring Solutions for Deep Foundation Testing

INTRODUCTION

Inspection is part of the quality assurance process. Traditional inspection required on-site
engineers or inspectors to monitor activities. This was generally limited to visual evaluations of
equipment and procedures. Advances over the past 40 years in electronic instrumentation have
greatly improved the measurements that can be made. More inspection leads to an increase in
reliability and reduction of risk. But often the measurement was taken and the evaluation made
days later in the office by the engineer. If the measurements confirmed proper construction, and
did not delay the construction, then problems were minimized. However, if the measurements
delayed the progress of construction, or found problems that required correction (often at
additional cost due to after-the-fact remediation), then this system was less than ideal.
Measurements taken at the convenience of the contractor’s schedule, in proper sequence, and
evaluated almost immediately would truly eliminate later problems and reduce cost. Electronics
have progressed in the last decade where real-time measurements for deep foundation solutions
can now be made routinely by construction personnel or civil engineers with little electronics
knowledge.

Communications have been markedly improved. In previous years, only larger projects
had on-site land phone lines. Now, cell phones make practically all sites accessible. Immediate
reporting of problems and observations to the engineers in a distant office is routine.

Many measurement instruments acquire data digitally. Results can be saved directly or
transferred and stored in computer files. These files can be transmitted electronically by email or
over the internet to engineers for immediate analysis and confirmation of quality. But this
process may still require manual manipulations of data files. Newer electronic devices can
immediately give guidance and/or communicate results to decision-making engineers. Deep
foundation installations require inspection, and electronic methods are now commonplace.

DRIVEN PILES: HAMMER ENERGY AND PILE BLOW COUNT MONITORING

The routine monitoring of every driven pile includes blow counting. However, blow counts
without hammer performance information is of limited value and blow counting is a tedious task
and prone to mistakes by the inspector, either because of site distractions or boredom.
Electronically, the sound of the hammer impact can be used to detect the hammer blows. The
time between blows can also be accurately determined and this blow rate converted to an
equivalent blows per minute (BPM). The blow rate can be used to calculate the stroke (H) for
open-end diesel hammers from the equation

H [ft] = 4.02 (60 / BPM)? — 0.3

The so-called “Saximeter”” hand-held unit has been used to count blows, determine blow
rate for any hammer type, and calculate stroke for open-end diesel hammers. The operator
presses one key every penetration increment (e.g., every foot, or perhaps inch) and the Saximeter
summarizes the average result (blow rate or stroke) with the blow count for that penetration
increment, thus compiling a complete driving log automatically. Results are stored in memory
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and can be downloaded electronically for storage and output. These results can be sent
electronically from the site to any location using e-mail.

The hammer performance should be part of any driven pile installation inspection since it
has a direct effect on blow counts, and thus assessment of pile quality. Unfortunately, inspectors
relying on traditional visual inspection often only focus on just counting blows and then ignore
observing the hammer because it is very difficult to focus on more than one parameter.

Hydraulic hammers have a variable stroke which directly affects energy transferred to the
pile. Because of this variability, some hydraulic hammers have built in inductive proximity
sensors to monitor the impact velocity and hence kinetic energy developed by the hammer.
Knowing the kinetic energy aids in evaluation of the pile installation and acceptance. These
inductive proximity sensors create an electrical oscillating sensing field that is emitted away
from the face of the sensor. When a metallic object such as the hammer ram enters this sensing
field, it causes a disturbance in the field that is detected by the sensor. When a pair of sensors
are strategically placed at a fixed distance apart axially along the ram travel path and so they are
activated just prior to the ram impact, the ram impact velocity can be computed from the time
required by the ram to travel the known distance between the sensors (hammers that lack
proximity sensors can have proximity sensors attached as an add-on device). .

A recent advance in the Saximeter technology is the inclusion of proximity sensor inputs
for the purpose of measuring hammer kinetic energy just before impact. From a small battery
powered electronics package attached to the hammer, the proximity sensor output can be sent by
telemetry to Saximeter to record and produce a real time display of kinetic energy of any
hammer equipped with proximity sensorsThe use of telemetry avoids a connecting cable which
is often in the way and subject to failure. Monitoring hydraulic hammers for kinetic energy is
considered an essential part of good inspection practice and to confirm the driving criteria.

The actual kinetic energy at impact and also the energy transferred to the pile are
sensitive to the blow rate for all hammers. Even traditional air hammers while thought to have a
“constant stroke”, in reality have a variable stroke and depend on the pile resistance and air
volume and pressure input for their actual performance. For example, the data in Figure 1 shows
a strong correlation between blow rate and energy transferred to the pile for a double acting air
hammer on a steel pipe pile. Blow rate dependence has also been observed for single acting air
hammers. Proximity sensors can be attached to these air hammers to measure actual kinetic
energy. Some diesel hammer manufacturers are now equipping their hammers with proximity
sensors to read out kinetic energy, partly in response to specifications which require such readout
for hydraulic hammers. Though not quite as informative as kinetic energy, the stroke of open
end diesels, which is related to both blow rate by the above formula and to pile resistance,
correlates well with energy transferred to the pile as shown for a typical case as shown in Figure
2.

DRIVEN PILES: DYNAMIC PILE TESTING

Dynamic pile testing with a Pile Driving Analyzer® (PDA) was a development sponsored
initially by the Ohio Department of Transportation and the Federal Highway Administration
(FHWA). It has become routine practice as evidenced by inclusion in many codes and standard
specifications in use in the United States, and many other countries. It is often used to
supplement static testing, or even replace static testing when the economics do not justify a static
test due to project size or rapid construction requirements. PDA tests also monitor energy
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transferred to the pile and pile driving stresses to assure proper and efficient hammer
performance as assumed by the wave equation analysis usually used to set the initial driving
criteria. If stresses are of concern, the hammer stroke or cushion properties can be adjusted to
reduce the likelihood of pile damage; again, the effectiveness of such measures should be
monitored.

Traditionally, PDA testing was done onsite by the engineer. However, this results in
added expense to the project due to travel time and associated costs. In many cases, scheduling
conflicts resulted in waiving the testing when the engineer was not available. Because of the
large number of bridges under construction each year, it was often not feasible to consider testing
for every bridge because of limited in-house testing personnel or budgetary constraints.

A new PDA called the PAL-R was developed which eliminates most of the problems
associated with the requirement of having a testing engineer physically on site. The PAL-R
collects the data on site and transmits it by cell phone or satellite phone for processing and
analysis to the engineer’s office. The PAL-R equipment is shipped to the job site in anticipation
of the testing. The sensors are attached to the pile by the pile driving crew, as is normal practice
even when the engineer is on site. The contractor presses a button on the PAL-R to connect it
with the PDA engineer in the office. Other than entering a pile name and the pile length, all
other action is then under the office engineer’s control.

This revolutionary development has major benefits to the quality and design of deep
foundations. Scheduling the testing in the traditional manner required the contractor to guess the
production schedule and the weather, and often the engineer was called to site a day early, or the
contractor had to wait for the engineer to arrive. Either solution increased the cost, and
unanticipated weather related delays or contractor’s equipment problems added cost as did
testing a pile during installation one day and then needing a restrike a few days later which
required two trips to the site. Using remote testing methods, no travel by the engineer to the site
is necessary and thus the requirements for test data are not compromised by the calendar. Since
the time spent by the testing engineer on site and in transit is eliminated, the actual time allocated
to testing and thus the testing cost is greatly reduced.

Because highway departments and consultants only have a limited number of engineers
qualified for the specialty PDA testing, scheduling difficulties are compounded when multiple
tests are required the same day. In some cases the testing requirement is then waived because no
engineer is available to be on site that day, and as a result the quality assurance program is
compromised. With the PAL-R testing, one engineer can handle multiple tests from different
site locations in the state (or even from multiple states) in the same day, increasing the engineer’s
efficiency while reducing cost, and assuring that testing services for quality assurance are
available when needed for all projects.

Although most bid specifications ask the contractor for a “per pile tested” cost,
consultants often charge per day, and the contractor then inherently increases the bid prices to
cover an unknown risk. The PAL-R method allows the consultant to provide dynamic testing
and subsequent analysis on a per pile basis since the travel related variables and other time
related uncertainties are eliminated. Since the contractor then knows the exact cost per pile
tested, there is no cost risk and his charges are likely to be reduced. If the testing is done
remotely by the highway department, then only the time for the actual test by the contractor is of
concern.

The final analysis and reporting of results for a traditional engineer-on-site dynamic pile
test usually occurred after the engineer returned to the office. With the innovative PAL-R
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technology, the engineer doesn’t leave the office. With each hammer blow in the field, the PAL-
R accepts and stores data on a memory card. Measured data is simultaneously sent by cellphone
to the PDA engineer’s office computer. The engineer observes the data as it is being received
and can provide advice to the site as the test is in progress. Upon completion of the data
collection the engineer can immediately begin the data analysis and reporting process. This
dramatically reduces reporting time delays. Thus faster results speed up the decision making
process, which has a positive effect on production pile installation.

Dynamic testing using remote technology has several advantages (e.g. lower cost testing,
improved scheduling, faster reporting of results) over traditional on-site testing. Although the
engineer is not physically present on site, by voice communication over another cell phone, he is
in constant contact with the site during the usual remote test. The site inspector can report any
unusual occurrences, and can answer any questions posed by the test engineer. The test engineer
sees from the data being received exactly the same information he obtains on site, and thus can
diagnose hammer problems (and observe hammer stroke for diesel hammers from the recorded
blows per minute), evaluate driving stresses, confirm pile integrity, and determine the Case
Method pile capacity at the time of testing. There are times when the engineer might go to the
field (e.g. at the start of a large project), and the engineer can then connect the PAL-R to a laptop
computer on site for full analysis ability. However, most subsequent dynamic testing can then be
performed remotely to the definite advantage of the project. This is particularly helpful for
restrike tests after several days to allow for inclusion of setup in the evaluation of capacity (a
procedure which can be very cost effective). Remote testing then is financially justified and the
scheduling of such brief tests easily incorporated by the contractor, but the logistics of the
subsequent traditional on site test often prohibit restrike testing with the preferred wait times.
Remote testing is also valuable for occasional periodic monitoring during construction to assure
that the hammer performance is similar to the performance during the test program.

As an example of use of remote dynamic testing, a 12x74 H- pile was driven as a test pile
by an APE D30-32 open-end diesel hammer for the E470 toll road widening at Peoria Street in
southeast Denver, Colorado. This relatively small project included 40 additional piles in two
abutments and wing walls. The axial design load was 184 kips [820 kN] based on an 8.5 ksi (59
MPa) design stress. The piles were driven to a claystone bearing layer to a final blow count of
10 blows per inch (25 mm). Using the standard AASHTO safety factor of 2.25, the required
ultimate capacity was 414 kips (1840 kN). The PAL-R was sent to the contractor two days in
advance of the testing. When the test piles were driven, the contractor attached the sensors to the
pile and connected the PAL-R via cell phone to a Cleveland engineering office where the PDA
engineer acquired the data (Figure 3) and immediately thereafter performed a CAPWAP®
analysis of the PDA data which yielded an ultimate capacity of 830 kips [3690 kN], or about
double the required ultimate value. Figure 4 shows the CAPWAP simulated static load test
result. The fully analyzed results were transmitted back to the contractor the same day to
confirm sufficient pile capacity and hammer performance. Since the pile drove relatively easily
and took up relatively quickly, savings in pile length would be relatively minimal in this case and
the contractor elected no change in driving criteria. The extra capacity also provided insurance
in case of possible relaxation in the claystone although experience in the area suggests no
relaxation.

Most and perhaps all H piles now supplied in the USA have 50 ksi [345 MPa] yield
strength. This same remote PDA testing process was used by the same contractor for a public
utility project in Fountain, Colorado with the data again sent to and analyzed in Cleveland. In
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that case the design stresses of initially 9 ksi [62 MPa] were increased to 18 ksi [124 MPa] at the
suggestion of the contractor, and dynamic testing on an indicator pile driven to the claystone
rock suggested the piles could be driven to twice the ultimate capacity (with the same safety
factor 2.0). A static test was used to confirm the dynamic testing results and the ability to use
these higher loads. A safety factor of 2.0 was considered sufficient for the higher loads. Critical
piles (those with the highest actual loadings) were marked by the structural engineer and were
included in the quality assurance program which included remote dynamic testing on 25 of these
critical piles. The test program and higher design stresses resulted in a reduction of number of
piles required. Because the piles were driven slightly deeper than for the conventional design,
and because all pile locations did not contain an even number of piles, the total pile length was
not reduced by 50%. However, actual savings in estimated project pile lengths were 35% and
therefore provided substantial savings to the owner (7).

These two PAL-R test cases show that design stresses for H piles driven to rock can be
substantially increased, given adequate testing to prove these higher loads. Because of relatively
low costs, particularly for remote testing, dynamic testing can be used on any size project to give
this assurance. Similarly, piles which have substantial setup can also achieve higher design
stresses. If the E470 project had a larger scope, the design stresses could have been increased to
reduce the foundation costs. The information gained on this E470 project could be used by the
highway designers for future projects. If sufficient testing during these small projects seems to
always find additional capacity available, then subsequent designs may eventually reflect this
through higher stresses and fewer piles. Thus in addition to confirming adequacy of the current
designs, potential substantial savings on future projects justify additional testing on these small
current projects.

AUGERCAST PILES

Auger cast-in-place (ACIP) piles are constructed using a continuous flight hollow stem auger.
The auger drills into the ground to the design depth. Grout is then pumped through the hollow
stem to the bottom of the auger and into the soil as the auger is withdrawn, leaving a column of
grout. A reinforcing rod is then usually placed full length in the center of the grout. In some
cases, a reinforcing cage (often only partial length) is inserted into the grout.

Traditional inspection of auger cast-in-place piles in the USA is primitive, and
unfortunately this inspection is still the norm, although progress has been made in the last few
years to a more enlightened approach. Grout volume traditionally was determined by counting
pump strokes. Although the guidelines promoted by the Deep Foundations Institute (DFI) for
many years recommended obtaining volume in five foot increments (2), in practice usually the
volume was only recorded for the entire pile, with the actual distribution along the shaft
unknown. With such little construction control, many engineers and particularly highway
departments were reluctant to accept augercast piles for their foundations.

Instrumentation has been developed to automatically monitor the grout (or concrete)
volume injected as a function of depth. Several systems work on a principle of counting pump
strokes and using a volume per pump stroke. However, such systems are inherently inaccurate
because the pump itself is variable (even missing or making false pump strokes). This deficiency
was observed in the United Kingdom many years ago and the Institute of Civil Engineers’
current recommendations (3) require a magnetic flow meter to measure volume. This is also an
essential element of the Pile Installation Recorder (PIR-A) System. Grout volume as a function



Likins, Piscsalko, Rausche, Hussein 7

of depth is obtained by the PIR-A with resolutions of one liter for volume and one inch (25 mm)
for depth. Obviously, a one inch depth resolution is too fine for practical use and presentation of
results and a two foot (or 500 mm) resolution is usually recommended.

The current DFI guidelines (4) suggest optional use of “automated monitoring
equipment” (AME) with flowmeters. AME devices can accurately document the drilling phase
(time and torque versus depth), and the grouting phase (volume versus depth). There is real time
guidance in the grouting phase for the operator. A graphics output displays actual volume versus
the target volume (e.g. 115% of theoretical) for each user selected depth increment (usually 2
foot increments are selected). If any incremental volume is lower than desired, then the operator
simply re-augers past the deficiency and re-grouts the hole properly. A numeric display also
continually shows the percent overage. Because of this more accurate and complete information,
the operator can then install piles that are more uniform in volume versus depth, and more
importantly can avoid sections of pile which are under grouted. This information is all stored on
a memory card and results are also printed on site immediately after pile completion. If a
deficiency is flagged by the printout, the engineer or inspector can immediately request the pile
be re-drilled and re-grouted while the grout is still fluid to correct the potential problem. The
electronic files can be transferred to a computer, and results sent by email in electronic form to
the supervising engineer in a distant office. In the future, the results might be sent by cell phone
directly from the PIR data acquisition device.

The grout pumped as a function of depth (as determined by an AME system) for a 16
inch diameter auger cast-in-place pile installed with a continuous pull procedure is shown in
Figures 5 and 6. Of course, while the graph shows the distribution of gout pumped versus depth,
there will be some redistribution of grout due to its fluid condition. The required grout ratio
(compared to the nominal or theoretical volume of the hole) was 115% for this project.
Graphically, Figure 5 presents the PIR-A results recorded in one inch increments and averaged
over various depth intervals. The nominal or theoretical volume equivalent to the hole created
by the auger diameter is also shown for reference (grout ratio 100%). Because of the pulsing of
the pump, it is obvious that reporting at less than 0.5 ft intervals is not practical. Ata 1 ft
resolution, the data are useful, but not yet consistent. The recommended 2 ft depth increment is
smooth enough to be useful, yet yields detailed information where sections may fall below
desired levels. It is clear that a section of pile exists at about 30 ft where the grout pumped did
not even reach the theoretical volume, and was well below the 115% grout factor ratio required
on the project. The volume was also low above 10 ft, which is not surprising as the grout return
was observed at 11.1 ft and the contractor chose to withdraw more quickly.

On another project, the PIR-A monitored the installation of 15 inch auger cast-in-place
piles with a required 115% grout factor. Figure 7, which demonstrates the installation of pile
209, shows the withdrawal rate of the auger and the pumped volume rate for the grout. Time
zero represents the beginning of the auger withdrawal at the maximum depth of 50 ft. After 4.3
minutes, the auger tip reached the ground surface at depth zero. Between times one to two
minutes, and also at about 2.5 minutes, the withdrawal rate is relatively slow compared to the
rest of the grouting operation. Similarly the pumped volume rate is also relatively low. Because
the auger cast-in-place operator followed the guidance of the PIR-A, the resulting volume
pumped per incremental depth along the shaft is then fortunately reasonably constant,
considering the observed variability in the pump and withdrawal process. The pumped volumes
are above the 100% theoretical volume of the hole as shown in Figure 8, even though the
withdrawal rate was so variable. Figure 9 compares the measured pressure in the grout line with
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the pumped volume rate. At the times when the volume rate is low, there is also an obvious
disturbance in the grout pressure. During this time, the pump was “operating” and “strokes”
were counted, but the ball valves of the pump malfunctioned causing the greatly reduced actual
grout volume. There were a small number of other pump malfunctions lasting only one or two
strokes in this sequence, such as at about 2.9 minutes and 3.6 minutes. Had the AME equipment
not been used, a pile with at least two serious defects would have been the likely result, thus
clearly demonstrating the value of real-time monitoring equipment for auger cast-in-place piles.

SUMMARY

Instrumentation has been recently developed to significantly improve monitoring of pile
installations and testing of deep foundations. For driven piles, hammer performance affects the
energy transferred to the pile and thus the blow count for any given depth or capacity. It is
therefore important to routinely monitor hammer performance for every pile and for every
hammer type (air, diesel or hydraulic). Hammer monitors have been incorporated into many
modern hydraulic hammers to obtain kinetic energy just prior to impact, and similar technology
is available for installation on any hammer lacking this ability from the manufacturer. The
results are sent via telemetry to the Saximeter where a driving log is automatically obtained
which includes both blow count and hammer performance. These results are available in
electronic form and can be sent to the supervising engineer as soon as they are acquired.

A new remote Pile Driving Analyzer promises to improve the quality and efficiency of
dynamic pile testing, and reduce its costs. Data is obtained with a field data collection system,
usually operated by the pile crew, field inspector, or site engineer, with the data transmitted
automatically by real-time cell phone technology to the specialist PDA engineers in the office.
This reduces scheduling problems allowing testing at the convenience of the contractor,
eliminates travel expenses, speeds the analysis and reporting process, improves the efficiency of
the PDA engineers, and allows for immediate decision making. By eliminating unknown costs,
dynamic pile testing can now be bid on a “per pile” basis to reduce costs to the highway
departments.

Modern instrumentation of auger cast-in-place pile rigs includes automated monitoring
equipment with flowmeters that accurately and without bias determines grout volume versus
depth. Real time guidance to the installation operator guides a more uniform installation and that
no zones of insufficient volume exist. The engineers and owners are given documented
assurance of proper incremental volume for each pile, again allowing for an immediate decision
on pile acceptance or rejection. It is obvious that counting pump strokes is not sufficient to
monitor the quality of auger cast-in-place piles, and that automated monitoring equipment is
essential for evaluation of the installed quality of such piles.

State-of-the-art electronic monitoring technology can now be effectively applied for real-
time monitoring and remote testing of driven piles and auger cast-in-place shafts. It is possible,
practical, and economically feasible to test every pile of a project in order to reduce the cost of
the foundation associated with safety factors that reflect unknowns related to the construction
and performance of individual deep foundation elements.
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Shaft Name: 309
Pile Vol: 73.07 £t3 (115%)

Withdrawal Data [start 11:15]
pumped volume line pres

depth volume ratio min max
(ft) (£t 3) (%) (PSI)
45.6 (max depth)
45.3 3.67 (stem vol)
45.3 6.96 (head vol)
45.0 0.99 121 102 353
42.0 4.91 117 101 318
39.0 5.72 137 102 325
36.0 6.75 161 102 323
33.0 6.67 159 103 321
30.0 3.85*% 92 101 321
27.0 3.35*% 80 100 337
24.0 5.30 126 104 330
21.0 5.01 120 106 339
18.0 5.62 134 105 343
15.0 6.11 146 104 344
12.0 4,.38%* 105 105 348
11.1 <-- return depth

9.0 5.33 127 106 350
6.0 3.39*% 81 105 355
3.0 3.00** 72 105 350
0.0 2.68%%* 64 113 354

0.00 (spill vol)

[stop 11:19
(00:03:49)]

Nominal Inc Vol: 4.19 ft3 (3.0 ft)

Target Inc Vol: 4.82 ft3 (3.0 ft)
Nominal Vol: 63.64 ft3 (16.0 in
dia)
Min Target Vol: 73.18 ft3 (115%)
Pile Vol: 73.07 ft3 (115%)
Stem Vol: 3.67 ft3
Head Vol: 6.96 ft3 (5.0 ft)
Reaugered Vol: 0.00 £t3
Spill Vol: 0.00 £t3
Total Vol: 83.70 ft3
Min Line Pres: 100 PSI

* pumped volume < target volume

**  pumped volume < nominal volume

FIGURE 6: PIR-A printout for augercast pile
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FIGURE 7: Volume rate and withdrawal rate versus time
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Volume and Withdrawal Rate vs. Auger Depth
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FIGURE 8: Volume and withdrawal rate versus auger depth

—— Withdrawl Rate
== Normalized Volume
—a&— Theoretical Volume (100%)




Likins, Piscsalko, Rausche, Hussein 17

Volume Rate and Pump Pressure vs. Time
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FIGURE 9: Volume rate and grout line pressure versus time




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


