
1 INTRODUCTION 

The history of vibratory pile driving has been dis-
cussed by several authors among them Smart (1969), 
Leonards et al. (1995) and, Viking (2002).  The lat-
ter dissertation is very much up to date and little can 
be added to its literature review.  Viking reports that 
the first studies on vibratory pile drivers were done 
in Germany in 1930 and in Russia in 1931. The first 
production units were built in Russia during or after 
the Second World War. Their utility was quickly 
recognized, leading to new developments in France, 
Germany and the United States. Among the newer 
developments was the Bodine hammer, which pro-
duced frequencies in excess of 100 Hz.  Called the 
Resonant Pile Driver, this machine achieved much 
higher penetration rates than those with “normal” 
frequencies at or below 20 Hz.  Although resonance 
is a function of the mass of the driver and the size of 
the pile, it is probably reasonable to draw the divid-
ing line between resonant and low frequency pile 
drivers at 50 Hz. 

The analytical treatment of vibratory pile drivers 
has either been done with simple energy formulas or 
with discrete representations of pile and/or soil.  
Discrete models include integration, much as intro-
duced by Holeyman, et al. (1996), or so-called wave 
equation analyses, e.g., GRLWEAP (GRL, 1998).  
Additionally finite element analyses have been tried 
(Leonard, et al. 1995) as an improvement over other 
methods.  

 

2 OBJECTIVES OF VIBRATORY HAMMER 
MODELING 

 
Vibratory installation of preformed piles and casings 
has an important economic impact. Installation 
times, only 10% of those achieved with impact 
hammers, are not uncommon.  On the other hand, 
unexpected refusal may occur where impact ham-
mers still drive efficiently.  Also the vibratory ham-
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mer may produce undesirable vibrations in nearby 
structures, a limitation that will not be discussed in 
this paper. 

The economic advantage of the vibratory hammer 
can only be realized if the contractor correctly pre-
dicts which size hammer will drive the pile to a re-
quired depth. Additional savings would be realized if 
it were assured that the pile had the required bearing 
capacity after installation. The simulation of the in-
stallation by vibratory hammers should therefore en-
able the analyst to predict the rate of penetration vs. 
depth (driveability analysis).  In addition, a so-called 
bearing graph should be constructed, which would 
relate the pile bearing capacity to the rate of penetra-
tion at the end of the installation. Examples of these 
relationships will be demonstrated below. 

 

3 BASIC COMPONENTS OF A VIBRATORY 
HAMMER 

 
The vibratory hammer, in its most common form, 
consists of pairs of eccentrically mounted masses 
which are contained in a frame whose appreciable 
mass may be called the oscillator. A bias mass iso-
lates the oscillator from the hammer support – usu-
ally a crane line. The oscillator is separated from the 
bias mass by a very soft spring (Figure 1). The bias 
mass therefore adds a static force to oscillator and 
pile. The force in the crane line reduces this static 
force and, if it is greater than all weights, allows for 
pile extraction.  Conveniently, the pile is attached to 
the oscillator by means of a hydraulic clamp. This 
connection may be considered rigid and, for model-
ing purposes, the clamp can be considered an inte-
gral part of the oscillator mass. 
 

When eccentrically supported masses (combined 
eccentric mass me) spin at a rotational frequency Τ = 
2Β f (f in Hz), their centrifugal force is  

 

Fc = me Τ2               (1) 
 

This centrifugal force (actually it differs slightly 
from Eq. 1 because of the oscillator’s vertical mo-
tion) is transmitted through the eccenter mass bear-
ings to the oscillator and thus to the pile.  Only verti-
cal components of the centrifugal force are 
transmitted to the pile because pairs of eccenters are 
spinning in opposite directions.  Normally the ham-
mer frequency is between 20 and 40 Hz and each 
peak compressive force generated by the vibratory 
hammer therefore occurs at intervals of 25 to 50 ms. 
For a resonant hammer, successive peak force values 
may occur at intervals of only 8 or 10 ms. 

 
The free-free frequency, fF, of a 20 m steel pile of 

wave speed c = 5120 m/s is 
 
 ff = c/2L = 5120/40 = 128 Hz  
 
Comparing this free pile frequency with that of a 

low frequency hammer shows that resonance is 
unlikely in piles of normally encountered lengths.  
However, the mass of the vibratory hammer and the 
clamp, attached through the clamp to the pile, tends 
to reduce the lowest frequency of the overall system 
and, when piles get long and drivers heavy, makes 
resonance possible.  According Poulos et al. (1980) 
the lowest resonance frequency of a system roughly 
reduces to 50% of the pile frequency if the mass on 
top of the pile equals the weight of the pile. 

If the hammer frequency is significantly lower 
than the hammer-pile frequency, then the particles of 
the pile have practically the same direction of mo-
tion at the same instance in time. Figure 2 demon-
strates in a length-time diagram the different loading 
patterns of a vibratory hammer and an impact ham-
mer. The relationship shown is approximately scaled 

Line Pull 

               Bias Weight 
                        Spring 
                  Oscillator 

 
                              Clamp 

Figure 1: Components of  
vibratory hammer system 

         Figure 2: Comparing typical impact and 
         vibratory hammer records 

    1 Vibratory cycle/5 wave travel passes 
Time 

Pi
le

 L
en

gt
h 



for a steel pile of 20 m length and a vibratory ham-
mer with a 25 Hz frequency. 

Because of the relatively slow upward and 
downward motion of the pile under a vibratory 
hammer, many mathematical models ignore the elas-
ticity of the pile and treat the pile as a single mass, 
acted upon by the oscillator force. The soil may then 
be considered an ideally plastic material, which re-
acts with an upward directed force during the 
downward pile motion and in downward direction 
when the pile is pulled upwards. 

4 RESONANCE EFFECTS 

 
It is important to distinguish two resonance effects: 
 

(1) Resonance in the soil has been observed 
to occur at relatively low frequencies 
(e.g. around 10 Hz) therefore occurs pri-
marily during hammer start-up and shut-
down, unless the hammer is equipped 
with a variable eccentric moment that can 
be reduced before the frequency is varied 
through the resonance range. This effect 
has been discussed in detail by Massarsch 
(1992). Only those models that include 
the mass and stiffness properties of the 
soil surrounding the pile have a chance of 
correctly predicting the soil resonance 
phenomenon. 

 
(2) Resonance in the hammer/pile system 

may occur at several frequencies. As dis-
cussed earlier, a low frequency resonance 
is possible depending on the relative 
magnitude of the hammer and pile 
masses.  Resonance will also occur near 
the piles basic frequencies.  Only those 
pile models that represent it’s flexibility 
have a chance of correctly predicting 
hammer/pile resonance. 

5 REFUSAL CRITERION 

Refusal is defined as a certain limiting rate of pene-
tration (mm/s). Smart defines it as 6.2 mm/s. Viking 
suggests 8 mm/s, citing the danger of excessive heat 
development in sheet pile locks. Of course, where 
bearing piles are driven, the lock friction is not of 
concern.  In that case the pile could be driven to 
lower rates of penetration. For example, impact 
hammers typically are used to sets as low as 1 mm 
per blow with blow rates around 1 blow/s.  Thus, 
from a productivity point of view, 1 mm/s still ap-
pears to be an acceptable rate of penetration. 

Rate of penetration is not necessarily the only cri-
terion for refusal conditions.  Stresses in the pile, 
particularly around the clamp also must be consid-
ered.  A realistic pile model can be particularly help-
ful for hammer and pile selection if the hammer is 
capable of predicting accurate stress levels near 
hammer/pile resonance. 

6   SIMPLIFIED APPROACHES AND ENERGY 
MODELS 

 
Consider the basic energy formula used for impact 
driven piles 
 

Ru = 0E / (s + sL)            (3) 
 
Where RU is the ultimate pile capacity; 0 is an ef-

ficiency, which reduces the theoretical hammer en-
ergy, E, to its actual value; s is the set per blow and 
sL is a displacement value covering losses in pile and 
soil. Adding to the reduced hammer energy the en-
ergy that the system’s weight, W, (hammer and 
clamp minus crane line pull) adds, one obtains 

 
Ru = (0E + Ws)/ (s + sL). 

 
Dividing the numerator and denominator of this 

equation by the time for one complete cycle T = 1/f, 
then this formula becomes 

 
Ru = (P + W vR)/ (vR + f sL)        (4) 

 

Table 1a: Pile properties after Smart (1969) 
Pile Type Length Area Penetr. Hammer Hammer Soil 

  (est.)  (est.) Power Frequency  
  m cm2 m kW 1/s  

62,1 HP14x117 30 221 27 343 107 Silt; dense to very dense Sand 
62,2 HP14x117 30 221 27 310 113 Silt; dense to very dense Sand 
62,3 HP14x117 30 221 27 343 107 Silt; dense to very dense Sand 
78, 1 HP14x117 30 221 18 343 91 Cemented Sand; Clay 
83, 1 CE-Pipe 24 47-54 20 37 43 Sand: N=31 to 61 
83, 2 CE-Pipe 24 48 20 37 49 Sand: N=31 to 61 



where P is the power actually supplied by the vi-
bratory hammer’s power unit (for that reason an ef-
ficiency factor is not needed), vR is the rate of pene-
tration (averaged over one cycle) and sL is a loss 
term, to be determined empirically as in a pile driv-
ing formula.  This is the Davisson formula according 
to Smart (1969).  Recommended values for sL range 
between 0.001 and 0.1 and may average 0.03.  Also, 
according to Smart, Bernhard performed model pile 
studies and modified the power formula as follows: 

 
Ru = (8P / vR )(L/D)           (5) 
 
The loss factor 8 not only covers power losses, it 

is an empirical adjustment factor and is to be set to 
0.1 unless other correlation data exists.  The L/D 
(pile length divided by pile penetration) may have an 
effect when the pile is only partially driven. 

Davisson’s power formula was modified and 
tested by Smart on more than 60 cases where rate of 
penetration and power readings were available. In 
several cases for which load test information was 
also available, Smart developed load-set curve de-
pendent adjustment factors in a so-called “perma-
nent-set method”. This method is not further dis-
cussed here as it adds undue complexity to what 
should be a simple formula. 

The case studies demonstrated by Smart repre-
sented primarily piles installed with a Bodine Reso-
nant hammer with frequencies between 43 and 144 
Hz and system weight W=98kN. Results from Equa-
tion 4 and 5 are demonstrated in Table 1b for 5 of 
Smart’s load test cases, described in Table 1a. 
 

 

 
 
These results show that Bernhard’s formula 

yields rather unreliable results with minima and 
maxima between 10% and 550% of the load test re-
sult. Davisson’s formula varies between 34 and 
2200% if the full recommended range of adjustment 
factors is considered.  The medium factor of sL = 
0.03 inch/s produces a scatter between 63 and 205%. 
This relatively good result may be attributable, at 
least in part, to the fact that this same data was in-
cluded in the study that led to the recommended loss 
factors. For other sites and hammers, different loss 
factors may be needed. 

The simple power balance equations suffer from a 
very important defect: they do not consider the rela-
tive magnitudes of end bearing and shaft resistance, 
which, as we shall see affect driveability and bearing 
capacity evaluations to a significant degree. Fur-
thermore, power formulas do not consider the type 
of soil into which the piles are driven. 

Most disturbing, however, for all potential capac-
ity determination methods is in Smart’s data the ap-
parent fact that the rate of penetration is unrelated to 
bearing capacity; for illustration, Figure 3 depicts 
load test capacity vs. penetration rate for the four H-
piles of Tables 1a and 1b. Note that soil types were 
similar and that power and frequency varied only 
slightly for these four cases. 

 
7 CASE METHOD 
 
The Case method was developed in the 1960s for 

impact driven piles on which measurements of force, 
F(t), and velocity, v(t), are taken near the top of the 
pile during driving. The Case Method formula for 
the evaluation of the instantaneous static resistance 
force, R(t), was derived assuming an elastic pile and 
a soil resistance that acts in one direction (upward 
when the pile moves downward). The Case Method 
formula then becomes (Rausche et al., 1985) 

 
R(t) =  ½ (F1+Zv1)(1-Jc) + ½( F2–Zv2)(1 + Jc) (6) 

 
Where F1 is the measured force at time t 
 F2 is the force at time t + 2L/c 
 v1 is the velocity at time t 
 v2 is the velocity at time t + 2L/c 
 Z = EA/c is the pile impedance 
 Jc is a dimensionless damping factor 
 L is the pile length 
 c is the wave speed in the pile material 
 E is Young’s modulus of the pile material 
 A is the cross sectional area of the pile material. 
 

Table 1b: Results from Power Formulas 
Pile Rate of Load Davisson Bern- 

 Penetr. Test 0.1 0.03 0.001 hard 
 mm/s kN kN kN kN kN 

62,1 132.1 2314 882 1667 2642 289 
62,2 8.9 2492 1049 3268 26399 3869 
62,3 15.2 3560 1201 3561 19192 2502 
78, 1 4.6 2270 1458 4649 49918 12509 
83, 1 91.4 490 230 372 500 51 
83, 2 67.6 668 229 419 638 69 
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Figure 3: load test capacity vs. rate of 
penetration for the four piles of Table 1 



For a rigid body the time 2L/c reduces to zero and 
thus F1 = F2 = F(t)  and v1 = v2 = v(t) and the for-
mula becomes 

 
R(t) = F(t) + M a(t) – Jv v(t).         (7) 

 
Eq. 7 is adequate for low frequency hammers. For 

higher frequencies, near the hammer-pile system’s 
resonance level, the Case Method equation for elas-
tic piles (6) would be more reasonable. Formula (6) 
approaches (7) as the pile length approaches zero 
and the pile becomes a rigid body of mass, M, with 
acceleration a(t). The damping factor, Jv, is equiva-
lent to the product of Z Jc. 

 
7.1 Example – Case Method applied to an off-

shore pile 
 
For low frequency hammers, Eq. 7 is satisfactory 

as shown by Likins et al. (1992) who described how 
a 1520 mm diameter pipe of 40 m length was driven 
with an ICE 1412 hammer (115 kg m, 21 Hz, 410 
kW) through 13.4 m of sand into a firm to very stiff 
clay.  The pile met refusal at a depth of 19.2 m and 
was then driven with a Vulcan 060 steam hammer 
starting at a blow count of 75 blows per 0.3 m of 
penetration. A reasonably accurate correlation was 
obtained between the positive peak value calculated 
by the rigid body Case Method formula and a dy-
namic impact test following the vibratory installa-
tion.  In this case Jv was set to zero.  (The lack of 
damping reduction may have been offset by the soil 
setup occurring between end of vibratory driving 
and the beginning of the impact test.) Figure 4 de-
picts a portion of the record taken at the end of the 
vibratory driving together with related, calculated 
pile variables. The force and acceleration records 
were evaluated according to Eq. 7 and indicated 
2820 kN peak soil resistance while the impact re-
cords yielded a CAPWAP capacity of 3050 kN. 

8  INTEGRATION METHODS 
 
The name “Integration Methods” was used in Vi-

king (2002) for an approach which (a) formulates a 
force balance for a rigid pile, (b) uses Newton’s 
Second Law to calculate acceleration and (c) inte-
grates the acceleration to obtain the rate of pile pene-
tration. Viking uses this name for rigid body models 
of the pile and either concentrated or discretized soil 
models such as the model of Holeyman et al., 1996.  
Viking differentiates between pile integration meth-
ods having rigid pile models from wave equation 
type models even though the latter also integrate mo-
tions calculated from a force balance. The difference 
is that the process is repeated for the segments of a 
discretized elastic pile. 

The basic model of Holeyman et al. (1996) is de-
picted in Figure 5; it not only includes the shaft re-
sistance and end bearing but also lock friction. Actu-
ally, shaft resistance and lock friction are treated in 

the same manner, i.e. as ideally plastic resistance 
components. More importantly, the shaft resistance 
is distinguished from end bearing by allowing it to 
have a negative downward resistance during the up-
ward pile motion while end bearing only has a posi-
tive component.  Holeyman’s simplified model cal-
culates the velocities during the upward and 
downward motions. The resistance components are 
modeled as ideal plastic forces acting at shaft and 
toe. An important part of Holeyman’s model is the 
reduction of the static shaft and toe resistance to so-
called liquefied values.  The algorithm requires an 
iterative analysis of soil and pile resistance since the 
liquefaction of the soil is considered a function of 
the vibration amplitude.  

Lock 
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Figure 5: Sheet Pile model after 
Holeyman et al. 1996. 

Driving Force: 
F(t) = me Τ2 sin(Τt) 

Figure 4: Measurement results from offshore 
pile, from top: acceleration, velocity, dis-
placement, transferred energy, force and re-
sistance after Eq. 7. 



Viking describes also the more elaborate Vipere 
soil model after Vanden Berghe (Figure 6). It in-
cludes a hyperbolically behaving shaft resistance and 
a practically bilinear toe resistance. The Vipere shaft 
resistance calculation is based on the analysis of 
several cylindrical soil elements, as proposed by 
Holeyman et al.(1994), surrounding the pile to 
model radiation damping associated with the shaft 
resistance. A degradation algorithm of the shaft re-
sistance as a function of soil strain is also included in 
this model. The shaft resistance model appears to be 
symmetric, i.e. the upwards directed resistance 
forces and the downwards directed resistance forces 
have equal magnitude.  The Vipere soil model pa-
rameters are based on laboratory test results. 

The Vipere toe model is shown in Figure 7.  It is 
interesting to compare this model with the wave 
equation toe model discussed below and depicted in 
Figure 8c.  Both models move with zero resistance 
through the “gap” created in the previous cycle.  
However, the Vipere toe model has a bilinear behav-

ior with a practically infinite stiffness during unload-
ing (coefficient of restitution, COR, near zero), 
thereby dissipating all energy stored in the soil 
spring.  The wave equation model, on the other 
hand, consumes energy only after plastification and 
through the associated viscous damping model. 

 
8.1 Modifications to the wave equation approach 
 
Although the rigid pile model seems to be satis-

factory as long as the piles are of moderate length 
and the hammers of “normal” low frequency, efforts 
have also been made to adapt the wave equation ap-
proach to represent the vibratory hammer, pile and 
soil. This is reasonable for a number of reasons.  
First, existing computer programs offer a detailed 
procedure easily used by the analyst. Second, al-
though pile elasticity is not a crucial parameter for 
analyzing low frequency hammers, the wave equa-
tion approach offers a rational means of analysis 
over a wide range of hammer frequencies and a sim-
ple approach to representing soil resistance forces.  
Since increasingly heavier hammers and larger piles 
are used, resonance effects may be more and more 
frequent and would go unrecognized by the rigid pile 
analysis.  Additionally, the wave equation analysis 
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readily calculates stresses in the pile, which may be 
important when resonance is imminent. Most impor-
tantly, the wave equation concept has been adopted 
by many practioners around the world; to the practi-
tioners it would be most convenient if the same ap-
proach could be used for vibratory analysis as for 
impact hammer analysis.  

The wave equation model according to 
Smith(1960) (Figure 8a) has been described in detail 
in papers and manuals (e.g. GRL 1998).  It’s soil 
model includes an elasto–plastic static resistance 
with parameters quake and ultimate capacity.  The 
static resistance on the shaft (Figure 8b) is assumed 
to be symmetric, i.e. it has during upward motions 
the same magnitude of resistance as during down-
ward pile motions but with opposite sign. Thus over 
one cycle, the impulse of this shaft resistance is zero. 
The toe model is similar, yet it has no negative resis-
tance components (Figure 8c). The Smith soil resis-

tance model also includes damping at shaft and toe, 
calculated as the product of damping parameter, 
static resistance and pile velocity. 

Modifications necessary to produce reasonable 
results for vibratory pile driving simulations by 
GRLWEAP include the following. 

 
1. The hammer model has to accommo-

date the sinusoidal forcing function over a 
relatively long time period. For example, a 
typical impact event is finished within 50 ms. 
In contrast, it may be necessary to analyze 
the vibratory motion for up to 2000 ms until 
a convergence in the pile variables is 
achieved. A long duration analysis is particu-
larly important when analyzing a hammer 
with very low frequency. 

 
2. During the analysis residual forces 

build up in pile and soil.  These residual 
forces are essential for the driveability 
evaluation and therefore must be accurately 
included in the analysis.  The analysis can 
only be stopped after the residual stresses, 
and therefore the pile motion, converge 
within a certain criterion. The residual 
stresses only occur where shaft resistance 
forces exist which exert a downward force on 
the pile when either the hammer applies an 
upward force or the pile rebounds. 

 
3. The model must calculate power con-

sumed by the hammer and if this value ex-
ceeds the rated value, reduction of power 
output must be automatically accomplished. 

 
4. The model must include the force of the 

crane line and allow for extraction if this 
force exceeds the weight of the system. Simi-
larly, it should be possible to analyze the pile 
penetration under a crowd force. 

 
5. Instead of blow count and set per blow, 

the program has to calculate the rate of pene-
tration or the time per unit penetration.  

 
6. The end bearing has to be much more 

carefully modeled than for impact driving 
because of the separation of the pile bottom 
from the soil during the upward motion. Fig-
ure 8c compares the standard static toe soil 
resistance model according to Smith with a 
model that has been found to be most reason-
able for vibratory analyses.  In this modified 
static end bearing model the pile bottom will 
move through the gap generated in the previ-
ous cycle with zero resistance until the point 
of maximum displacement minus elastic re-
bound is reached.  If the standard model were 
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used, the pile will work itself out of the 
ground unless it has a large shaft resistance. 
This model may be called “Residual Toe 
Gap”. The traditional model could be re-
ferred to as a “Closing Gap”. It is conceiv-
able that the Closing Gap analysis is more 
reasonable than the Residual Gap model un-
der soil conditions, such as soft clays or 
loose submerged sands, particularly when 
frequencies are low.  Fortunately, the soft or 
loose strata do not cause high end bearing 
values and therefore introduce little uncer-
tainty. 

 
7. Energy losses are modeled with (a) 

Coulomb damping of the elasto-plastic static 
soil resistance component and (b) viscous 
damping. Since the particle velocities are 
usually lower than for impact driven piles 
and since the damping behavior is non-linear 
(Coyle et al., 1970) it is suggested to use 
Smith-viscous damping with damping fac-
tors, JSV, which are double the normally sug-
gested Smith damping factors for impact 
driven piles.  Thus, 

 
 Rd = RU v JSV 
 

where RU is the ultimate soil resistance at a 
segment, v is the pile velocity, and JSV is the 
Smith-viscous damping factor. 
 

 
 

8.2 Example, driveability with Vipere  
and wave equation 
 

This example was taken from Viking (2002) and de-
scribes the driving of a sheet pile (cross sectional 
area 95 cm^2 and length 14m) with an ABI hammer 
(MRZV 800V). This unit has a variable eccentric 
moment with a maximum of 12 kg m and was run at 
41 Hz. Below a 2.5 m thick clay layer, the soils con-
sisted of silty sand and sand to the installation depth 

of 12 m where the cone resistance varied between 2 
and 4 MPa.  

The wave equation analysis was run with typical 
quake values of 2.5 mm and double Smith-viscous 
damping values were chosen as follows: 0.33 s/m in 
the sand, 0.60 s/m in the silty sand  and 1.2 s/m in 
the clay.  For the toe, the damping was set to 1.0 
s/m. For the sand it was assumed that the unit shaft 
resistance increased from 10 to 15 kPa and that the 
toe resistance increased from 10 to 15 kN. The 
driveability analysis results of the Vipere and 
GRLWEAP analyses are shown in Figure 9.  Obvi-
ously, the calculated rates of penetration were well 
predicted for the 12 m depth but were grossly over 
predicted for the early part of the analysis by either 
analysis.  Viking suggested that lateral motions in 
the early driving portion caused a reduced rate of 
penetration. 

 
 
8.3 Example, sheet pile driving 
 

A double sheet pile section was driven with an ICE 
815 vibratory hammer as part of a cellular cofferdam 
installation.  This hammer has an eccentric moment 
of 51 kg m and was run at 22.5 Hz. In order to avoid 
problems with misalignments, the contractor drove 
sheets short distances, working successively around 
the circular cofferdam. The soil was cohesive and 
relatively early refusal was the reason why meas-
urements were taken during vibratory driving. It was 
concluded the soil setup along with lock friction 
caused the problems. 

The analysis was done with a 0.7 efficiency based 
on field measurements of force and velocity. The 
calculated bearing graph is shown in Figure 10; it 
used double the normal quakes and double damping 
factors. As can be seen, stresses and capacity calcu-
lated with these parameters agreed quite well with 
measurements. 

          Toe Refusal 
Case Q shaft Q toe Jshaft J toe Cap. Capacity 

 mm mm s/m s/m kN kN 
1 5 5 1.3 1 235 780 
2   2 1.5 180 600 
3   0.65 0.5 270 900 
       
4 2.5 2.5 1.3 1 338 1125 
       
5 5 5 1.3 1 90 860 
6     270 540 
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Figure 9: Calculated and measured 
penetration rates after Viking (2002) 

 
Table 2: Results from sensitivity study 



This example is suitable for a check on the sensi-
tivity of some of the soil parameters of the wave 
equation approach.  Table 2 shows capacities that 
were calculated when varying damping values, 
quakes and the percentage of the end bearing. Obvi-
ously, refusal capacities are equally sensitive to all 
three quantities varied with the quake reduction from 
5 to 2.5 mm allowing for the greatest increase in ca-
pacity.  On the other hand, with damping and quake 
values the same, an increase of end bearing percent-
age from 30 to 50% had the most pronounced effect 
on capacity.  Clearly, for a given set of soil parame-
ters there is a limiting end bearing (in this case 
around 300 kN) that cannot be overcome by the sys-
tem. 

 

 
 
8.4 Example, reanalysis of pipe pile data 
 

 ile 83,1 (Table 1) was one of the better docu-
mented cases in Smart (1969) and most data needed 
for an analysis by GRLWEAP was available. The 
hammer was a Bodine resonance pile driver run at a 
relatively low frequency of 41 Hz and with a re-
duced moment of 0.94 kg m.  Using standard soil re-
sistance parameters for the silty sand and sand strata, 
i.e. double damping factors and 2.5 mm quakes, re-
fusal penetrations were calculated for capacities ex-
ceeding the static weight of the driving system. On 
the other hand, Smart’s field observations suggested 
a final penetration rate of more than 90 mm/s and a 
load test capacity of 490 kips. The static weight of 
the system was approximately 110 kN. The calcu-
lated displacement vs. time graph, shown in Figure 
11, gives one explanation for the disagreement: the 
calculated dynamic double-amplitudes at the pile top 
and toe were only 0.57 and 0.27 mm, respectively, 
and therefore much less than the quake values of 2.5 
mm. (Note that the constant displacement offset is 

due to the elastic pile penetration under the static 
weights.) Since neither static nor dynamic forces 
were sufficient to fail the soil, it is not surprising that 
the analysis did not predict any appreciable pile 
penetration. This is the only example that clearly 
shows that the soil must have been in a reduced state 
of strength during driving, even though the power 
equations suggest that the pile bearing capacity dur-
ing driving was close to that in the load test. 
 

 
8.5 Example, resonance calculations 

 
A special hammer was built and tested in the yard 

of the hammer manufacturer where weathered rock 
was encountered less than 4 m below surface.  The 
surficial materials consisted of cohesionless soils. 
The hammer had an eccentric moment of 3.8 kg m 
and was designed for frequencies up to 80 Hz. A 
closed ended pipe of 170 mm diameter and 18 m 
length was instrumented with strain transducers and 
accelerometers and was rigidly bolted to the oscilla-
tor (12.4 kN weight). The bias weight was 29 kN.  

One of the questions to be answered by the test 
was the behavior of this hammer in the neighbor-
hood of resonance. Resonance for the pile alone on 
rock would occur at approximately 7 Hz (c/4L, i.e. 
wave speed in steel divided by 4 times the pile 
length); according to Poulos et al. (1980), for the 
above hammer weights, the resonance frequency of 
the hammer-pile system would be near 14 Hz. 

 Resonance was checked by dividing the maxi-
mum measured pile top force by the centrifugal 
force. The available measured data (Figure 12a) in-
deed suggests that the force ratio increases near the 
14 and 70 Hz hammer frequencies. Unfortunately, 
because of a limited power rating of hammer and 
power pack, unlimited resonance forces could not be 
measured. 

A check was made on the pile behavior by 
GRLWEAP calculating pile forces, power dissipa-
tion in the pile and force ratio.  These results are 
shown in Figures 12b and c and very clearly indicate 
the same tendency as the measurements.  However, 
in order to avoid that the program automatically re-
duced the power output which would have made a 

Figure 10: Results from GRLWEAP sheet pile 
analysis with double quakes and double damping 
and comparison with measured results for (from 
top) compressive and tensile stress and capacity 
at 1600 s/m rate of penetration. 

Figure 11: Calculated displacements of  
Pile 83,1 Table 1a 

0.57 mm 



resonance check difficult, the power rating was arbi-
trarily set to an unrealistic high value of 1000 kW. 
For that reason, calculated power transfer and forces 
at the pile top reached much higher values than dur-
ing measurements. Still, the tendency is obvious: 
resonance is indicated in the 15 and 80 Hz range. In 
fact, during the test when the hammer frequency was 
increased to values above 70 Hz, the stresses in the 
pile became so high that the pile-oscillator connec-
tion ruptured.  It should be pointed out that such 
relatively realistic resonance studies can only be 
successful with an elastic pile model. 

 

8.6 Example, large caisson 
 

This example has been discussed by White (2002). It 
deals with a 12 m diameter by 0.25 m thickness con-
crete caisson of 25 m length.  The caisson was ta-
pered down to 0.21 m thickness at mid-length. Four 
APE 4B hammers with 683 kg m eccentric moment 
and 750 kW power each were employed with fre-
quencies between 19.4 and 20.8 Hz. Soils consisted 
of clay, silty sand, sand and again silty sand with N-
values of at most 3.  For the analysis it was assumed 
that the unit shaft resistance and unit end bearing 
would be 10 kPa (degraded to 80% during driving) 
and 90 kPa, respectively. The total shaft resistance 
was figured for the inside and outside area of the 
cylinder. Damping was set to 1.3 and 1.0 s/m at shaft 
and toe and quakes were set to 2.5 mm. The ob-
served final penetration times at 12 m depth ranged 
between 37 and 53 mm/s. The wave equation calcu-
lated penetration times are plotted vs. depth in Fig-
ure 13.  They were 36 and 50 mm/s for 100% and 
80% of the assumed static resistance values at the fi-
nal penetration.  Most of the penetration occurred 
prior to vibratory driving due to the static weight of 
hammers, transfer beams and caisson. 
 One of the advantages of analyzing an elastic pile 
model is the possibility of calculating reasonably ac-
curate pile stresses.  In the case of the concrete cais-
son, calculated stresses were at most 1.5 MPa.  This 
stress is equivalent to a force of 13.8 MN.  One 
quarter of this stress had to be transferred at each of 
the four points where the transfer beams were at-
tached to the pile top. 
  

9. FINITE ELEMENT METHODS 
 

For the sake of completeness it should be added 
that Leonards et al.(1995) reports, how FLAC (Fast 
Lagrangian Analysis of Continua), a finite element 

Figure 12: a) measured force ratio b) 
GRLWEAP calculated forces and power trans-
ferred to top of pile; c) ratio of pile top force to 
centrifugal force;  
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code, was adapted to the analysis of vibratory pile 
driving. The researchers only modeled cohesionless 
soils in their study.  For loose sands they considered 
a strain hardening model and for dense soils a strain 
softening model. Based on the calculated stress-
strain history, both shear stress and void ratio would 
approach the steady state values. The transverse dis-
placements, i.e. radiation damping, in the soil were 
tracked as a function of time. The computer program 
typically required several days for an analysis. 

This initial study did not get into details about vi-
bratory pile driving specific model details.  It ap-
pears that it was limited in scope due to lack of 
funds. Preliminary results appeared to be reasonable, 
and it appears that this is an interesting research tool 
for future studies. 

 
10. SUMMARY 

 
The following conclusions can be drawn from the 
examples analyzed. 
 

• Reliability of prediction of vibratory pile 
driving is still elusive.  There are still many 
unanswered question. 

 
• The absolute magnitude of shaft resistance 

(or the shaft quake) is less important than the 
absolute magnitude of end bearing. If the 
percentage of shaft resistance is low then the 
pile can only be driven if the sum of crowd 
force and weight of all components exceeds 
the end bearing. 

 
• The stiffness (quake) of the shaft resistance 

is as important as the absolute magnitude of 
the shaft resistance.  It is possible that this 
parameter varies as much due to vibration as 
the soil resistance itself. 

 
• The end bearing elastic properties have to be 

as carefully considered as the magnitude of 
the end bearing. 

 
• Both static elastic and dynamic resistance pa-

rameters can have a decisive effect on drive-
ability. 

 
• In general, reasonable agreement between 

field observations and analysis can be 
achieved even without a liquifaction model 
for the shaft resistance. 

 
• Stress predictions, even near resonance, can 

be made with reasonable accuracy. 
  

11. RECOMMENDATIONS FOR ADDITIONAL     
WORK 

 
The following studies and improvements should be 
made to aid the practitioner in the proper selection of 
vibratory piling equipment and for a better assess-
ment of vibratory driven pile capacity. 
 

• Most studies on vibratory pile driving deal 
with cohesionless soils.  However, cohesive 
soil types pose more important questions re-
garding driveability than sands. 

 
• Correlation studies dealing with the predic-

tion of the bearing capacity of vibratory 
driven piles have to consider carefully the ef-
fects that the final cycles before hammer 
shut-off. For example, it may be necessary to 
require a certain procedure at the end of in-
stallation (e.g. certain final frequency while 
the eccentric moment is reduced to zero) to 
assure consistent capacity results. 

 
• The differences between high frequency-low 

amplitude vibratory pile driving and lower 
frequency–high amplitude are still not under-
stood and should be investigated. 

 
• A method for calculating the increase or de-

crease of end bearing due to vibratory pile 
driving should be established for both cohe-
sive and non-cohesive soils. 

 
• Since liquifaction at the shaft does not seem 

to have a pronounced effect on drivability it 
is suggested to spend less effort on sophisti-
cated resistance degradation models for the 
shaft and much greater efforts on investigat-
ing the change of pile toe resistance.  
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