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Chapter

Perspective Chapter: Interpretation
of Deep Foundation Load Test Data

Jon Sinnreich

Abstract

Static load tests are seen by many practitioners as the best techniques to approximate
in-service conditions for deep foundation elements and to validate analytical model
predictions of capacity and settlement. Full-scale static load tests are fairly expensive to
implement, especially as part of a pre-construction investigation when equipment and
personnel must be mobilized to site separately to specifically install the test element(s).
Test elements are often instrumented with strain gages to determine the load distribu-
tion during the test. Correct installation of gages and interpretation of the resulting data
is critical to properly evaluate the test results and recoup the significant investment
made in conducting the test. This paper discusses several key points in the interpretation
of strain gage data in deep foundation load tests.

Keywords: strain gages, deep foundation load testing, tangent stiffness, incremental
rigidity, t-z curves

1. Introduction

Static load tests are seen by many practitioners as the premier techniques to
approximate in-service conditions for deep foundation elements and to validate ana-
lytical model predictions for load-bearing capacity and settlement. Full-scale static
load tests are fairly expensive to implement, especially as part of a pre-construction
investigation when equipment and personnel must be mobilized to site separately to
specifically install the test element(s). Test elements are often instrumented with
strain gages to determine the load distribution during the test. Correct installation of
gages and interpretation of strain data is critical to properly evaluate the test results
and recoup the significant investment made in conducting the test.

The ultimate product of a foundation test strain data analysis is often a set of
curves which model the non-linear unit soil response to shear and bearing load (typ-
ically called ‘t-z’ and ‘q-z’ curves, respectively). These curves are useful to model the
foundation response to load [1]. Strain gage data is utilized to compute both the shear
and bearing (‘t’) and displacement (‘z’) portions of the curves.

In the first section, statistical results collected by the author in two large-scale test
programs involving multiple test foundations each are analyzed to investigate the
optimal positioning of strain gages in a test element. In the second section, the
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conversion of strain to force via the rigidity function is discussed. In the third section,
use of strain data to properly calculate zone displacement is derived.

2. Optimal strain gage arrangement

The discussion in this section was originally published in [2]. The assumption of
axial plane-strain is significant to converting measured strain to axial force. Eccentric
stress in the foundation element whether due to inclined or eccentric loading, uneven
soil resistance, irregular foundation cross-section shape or other reasons will cause an
uneven distribution of strain across the element cross-section. Based on Euler beam
theory, the total strain is a superposition of axial strain (which is required to compute
axial load) and bending strain which is disregarded. In axial compressive or tensile
load testing of foundations it is presumed that axial strains due to applied loading will
be significantly greater than incidental bending strains due to load eccentricity or
other second-order causes. Total strain is assumed to be linearly distributed across the
plane of the element, and the net average axial strain will intersect the centroid of the
element. Therefore, obtaining the strain at the centroid is key to computing the net
axial force.

The theoretical performance of gages arranged in various configurations and then
averaged for the purpose of force calculation is validated using statistical results
collected during the course of two large-scale test programs (the ‘Florida’ case history
and the ‘California/Nevada’ case history, respectively), each involving multiple test
foundations.

Normally, two or more strain gages are installed in a test foundation per level,
attached to the steel reinforcement. Spacing the gages symmetrically around the
perimeter allows for an estimate of the strain at the centroid to be computed as an
average of the individual strain measurements. One opposed pair of gages is the
typical arrangement. In the Florida case history test program, the owner specified
three gages per level. It was not explicitly stated, but the implied arrangement was
an equal spacing of 120° around the perimeter of the pile reinforcement cage
(Figure 1).

Strain gages installed in cast-in-place foundation elements the field have a
percentage mortality rate (probability of failure), designated A. This is most often due
to installation procedures for deep foundations. When constructing drilled shafts,

Figure 1.
Typical arrangement of opposed pair and triplet strain gages in pile cross section with computed average (dashed
lines).
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reinforcement cages must be lifted by crane, rotated from horizontal to vertical and
then inserted into the shaft excavation. Concreting then takes place, either via the
tremie method or by gravity pour, both of which are dynamic procedures with many
opportunities to damage a gage. For auger-cast-in-place (ACIP) piles, the relatively
slender and flexible reinforcement cage is lifted into the air at the head only for rapid
insertion into fluid grout, which induces a 90° bend into the cage as it is lifted. In the
Florida case history testing program, from a total of 657 sisterbar vibrating wire strain
gages installed in eleven bi-directional ACIP test piles, seventeen gages failed to
function during testing, yielding a mortality rate 4 of 2.6%.

To estimate the strain at the centroid of the foundation element, the
symmetrically-arranged gages at a given level are averaged. All the gages at a given
level must function in order to compute the average at the centroid. Given k gages at a
level, the probability of success S in this situation is computed as the simultaneous
probability of survival of all the gages:

Sp=(1-2" (1)

Even though in practice if a single gage fails the remaining gage(s) are often still
utilized to estimate the average strain, this is not optimal since the resulting average
is now off the centroid and therefore may not be representative of the average axial
load if an uneven strain distribution is present in the cross-section due to bending
stress.

To evaluate the potential significance of the difference between using an opposed-
pair average and a single gage (assuming its opposite malfunctioned), data from a
total of 207 pairs of functioning opposed gage pairs in the eleven axial test piles in the
Florida case history is analyzed. A relative difference is computed for each logged
reading of each opposed gage pair:

e1 — Eang|

d =

&1+ &
where €, =
Eavg 2

(2)

For each gage pair, the differences are averaged for all increments of loading. The
resulting 207 data points are plotted on a histogram, and a log-normal probability
distribution function is fitted to the resulting data (Figure 2).

The results of this analysis indicate that for this data set, the mean difference
between data from a single gage and the average of the opposed pair is 15.3%, a
significant dissimilarity. The inset figure plots the difference between individual and
averaged strains as a percentage versus maximum average strain, which ranged from
single digits of microstrain in gage levels near the ground surface to over 1000
microstrain in the vicinity of the bi-directional jacks. Although several of the highest
individual difference values correspond to the smallest maximum strains, there is a
fairly even distribution and no strong correlation to absolute values of strain, indicat-
ing the high mean difference is not confined to gage levels recording relatively little
total strain (in other words, due essentially to a low signal-to-noise ratio). Obtaining a
good measure of the average strain, rather than relying on an off-center result is thus
crucial to computing the correct axial force.

Using Eq. (1), the surprising conclusion is reached that installing three equally-
spaced gages per level (presumably for additional redundancy) actually results in a
lower probability of successfully in obtaining the average strain at the pile centroid
(92.4%) than by using two gages in an opposed pair (94.9%, using the numeric

3



New Approaches in Foundation Engineering

70
100%
60 5%
50%
50
25%
40 0%

800 1600

1200

30

20

10

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

Figure 2.
Histogram and estimated probability distribution for percent difference between individual and averaged strains
(inset figure — Percent difference vs. maximum average strain).

Figure 3.
Strain gage triplet averaging results with defective gage (left), and with 0°, 90°, 180° arrangement (vight).

values for this case history). This is because in either arrangement, the average strain
at the centroid is successfully computed only if all the gages function, and assuming
each individual gage has an equal probability of malfunction, there is a higher
cumulative probability of losing one gage out of three installed than one out of two
installed.

In this test program the three specified gages were installed at 0°, 90° and 180°
around the rebar cage at each level (see Figure 3). The gage at the 90° position was
logged but the data was not used in the analysis of results unless one of the other gages
malfunctioned. This resulted in a slight improvement in the overall test program; five
of the seventeen malfunctioning gages were at the 90° position, resulting in no nega-
tive effect on the data analysis.

Substantial redundancy is achieved by installing four strain gages per level, if they
are viewed as two independent sets of opposed pairs. If all four gages function
properly, then the average strain is computed from all four. However, if any one gage
malfunctions, it and its opposed twin is discarded and the average is computed from
the remaining opposed pair only, which should still yield a good measure of strain at
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Figure 5.
Scatterplot of ratio of maximum A-C average to B-D average versus overall maximum strain.

the pile centroid. Note that the gages do not have to be spaced at 90° angularly; each
pair needs only to be 180° opposed (Figure 4).

The probability of success Sy, for this arrangement is computed as one minus the
probability of simultaneous failure of both opposed pairs:

Sor =1 (1= =1— (1_(1_4)2)2 3)

For the Florida case history, using the same value 1 of 2.6% results in a probability
of success of 99.7% (up from 94.9% using two gages in a single opposed pair).

The California/Nevada case history data set consisted of a total of 488 gages in 122
functioning quartets from sixteen drilled shaft tests. By convention, the gages are
designated A, B C and D, clockwise in plan around the rebar cage perimeter. The two
opposed pairs are then labeled A-C and B-D, respectively. Figure 5 plots the ratio of
the maximum average strain of the A-C pair to the B-D pair versus the average of all
four gages.

The average of the ratios is 1.01, indicating that in general the A-C and B-D pairs
converge on the same average strain value. However, the standard deviation is 0.10,
meaning on average there is a potential for approximately 10% deviation in the
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measured strain (and thus computed load) using one versus two pairs of gages.
Depending on the test objectives, this value may be significant enough to justify
specifying four gages per level.

The purpose of embedding strain gages in a test foundation is to determine the
load distribution (see below) and from it, the t-z and q-z curves. As such, there are
two possible strategies to consider when deciding on the location (depth in the
foundation) for each level of strain gages. The first approach will seek to identify the
shear capacity of distinct soil layers in the stratigraphy. Based on a nearby (or ideally,
centerline) soil boring, gages should be positioned at the interfaces between various
soil strata to separately identify the capacity of each. Alternatively, if the test data is to
be used as input to a finite-difference computer model such as FB-MultiPier, the
gages should be positioned at an even spacing corresponding to the node spacing in
the computer model. Consultation with the design engineer during the planning
phase of a load test program will help identify test objectives and inform the optimal
layout of strain gage levels. As a general guideline, gages should not be located closer
than one element diameter to boundaries of the foundation (top, base and/or
embedded loading device for bi-directional tests), in order to assure a plane-strain
condition.

3. Incremental back-calculation

The function which converts axial strain to stress in a deep foundation is the
multiplier consisting of Young’s modulus of the foundation material E times the cross-
sectional area A. This function is often called the ‘stiffness’ of the foundation,
although technically this is a misnomer since by definition the units of stiffness are
force per length (AE/L), whereas the conversion of strain (unitless) to force must also
be defined in units of force (AE), and is properly called the ‘rigidity.” Composite axial
rigidity calculations based on empirical relationships such as the ACI 318 formula [3]
result in a constant value of AE. These types of empirical formulas are based on
several assumptions, including average concrete strength fc and knowledge of the
cross-sectional area, which may be only nominally correct. In addition, confinement
effects and the fact that the stress-strain relationship (modulus) of cementitious
materials is not linear are also not considered.

The basic assumption of incremental rigidity back-calculation methods is that the
non-linear stress-strain relationship of cementitious materials (drilled shaft concrete
and augercast pile grout) can be adequately approximated with a quadratic function
[4]. This assumption seems reasonable if a family of stress-strain curves is examined
(Figure 6), with a parabola (red-dashed line in the figure) overlaid over the

fc =4000 psi curve as an illustrative example. The approximation is quite good from
the origin up to the peak stress (yield point), which is all that is required for the
analysis of load test results. The value of Young’s modulus is the slope of the stress-
strain function curve at any given strain. As noted in the case histories in the previous
section, it is not uncommon during axial load testing to measure strains on the order
of 500 to 1000 pe or more, especially in slender elements such as ACIP piles.
Therefore, the non-linearity of Young’s modulus of cementitious materials must be
accounted for.

The axial rigidity contribution of steel reinforcement in the composite cross-
section is typically relatively small, and the stress-strain curve for steel is assumed
linear up to the yield point which means its modulus is relatively constant. Therefore,
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Figure 6.
Concrete stress-strain curves and quadratic approximation (ved dashed line).

the non-linear properties of the cementitious material govern the composite
cross-section rigidity of the foundation element.
The equation of the parabolic quadratic function illustrated in Figure 6 is given by:

o =ae* +be+c (4)

Note the constant term c is always zero, which assures that the parabola intersects
the origin. The cross-sectional area is assumed to remain constant throughout the
analysis; the small effect of Poisson’s ratio is neglected. Therefore, to convert from
stress to force and modulus to rigidity, Eq. (4) is simply scaled by the cross-sectional
area A:

F = Ac = A(a&® + be) (5)

3.1 Incremental back-calculation

The Secant Modulus (SM) method is the simplest back-calculation technique. A
strain gage (or set of strain gages) is installed in the deep foundation element at or
above ground level, such that all of the applied force P at the head of the element must
be registered by the gage(s). That is to say, no force is shed into the soil via skin
friction between the point of load application and the strain measurement. At each
incremental step 7 of the load test, the rigidity is computed as:

P,
(AE”l)semnt = 8_ (6)

n

Note that the method is typically discussed in terms of stress and strain [5, 6].
Starting with test load data, the foundation cross-sectional area is divided out in order
to derive a function for the modulus. In order to recover forces, the cross-sectional
area must be multiplied back into the analysis later. Herein, this intermediate step is
eliminated since the ultimate objective is to convert strain data to force.
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This method is called ‘secant’ because the resulting rigidity function is the slope
from any point on the force-strain curve back to the origin. Once testing is complete,
each of the rigidity values AE, are plotted versus ¢,, and linear regression is used to
determine the slope and offset (2 and b respectively) of the best-fit line through the
data. Substituting Eq. (5) into Eq. (6), the result in terms of the quadratic function
presented above is:

2
(AB) g = 2010 _ (e 1) )

To compute the force at any strain, Eq. (7) is rearranged:
F, :A(aefl —|—198n) (8)

One drawback of this method is that it cannot be utilized during bi-directional
testing. The plane-strain assumption (the strain measured by the gages is an accurate
representation of the average strain throughout the cross-section) means that the
gages must be positioned at least one element diameter away from the point of
loading, in order for local stress variations at the point of loading to even out. In a bi-
directional test, significant force may be shed into the soil via skin friction within this
span, invalidating the relationship in Eq. (6) because the force at the strain gage
location is now an unknown.

Additionally, in cast-in-place foundation elements (with variable cross-section
area and curing conditions), or those which have variable reinforcement with depth,
the SM method may not yield accurate rigidity estimates for embedded strain gage
levels because the ground-level gages may not be representative [7].

3.2 Tangent modulus and incremental rigidity methods

The Tangent Modulus (TM) method was initially derived by Fellenius explicitly
for the modulus, with the cross-sectional area considered separately. This is best
applicable for foundation elements with assured constant cross-section properties
(such as driven piles). The Incremental Rigidity (IR) method discussed in [7, 8]
recognized that the rigidity (modulus times area, AE) is a single function which can be
identified without explicitly identifying the relative magnitude of either of the two
components A and E. In this discussion the analysis focuses on the strain-force rela-
tionship (effectively, the Incremental Rigidity method), although from a strictly
mathematical derivation standpoint, the TM and IR methods are equivalent.

In the IR method, rigidity is computed as the slope of the force-strain curve at a
given strain. This slope is approximated as the change in applied load AP divided by
change in strain Ae for successive load increments:

AP P, P,

~
incremental ™ Ae

(AE,) 9)

Ep — Ep—1

As with the SM method above, once testing is complete the rigidity value at each
increment is plotted against its corresponding strain and a best-fit line plotted through
the data. However, the incremental method requires that the side shear section
between the point of load application and the strain gage elevation has reached or at
least approached its ultimate capacity. Because of shear resistance, the force increase
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Figure 7.
Sample rigidity analysis from strain gage data.

at the strain gage will be less than the applied load increase during the initial part of
the test. Therefore, the resulting incremental rigidity values will be excessive. It is
only after the side shear section between the point of load application and the strain
gage reaches its ultimate shear capacity that subsequent applied load increments result
in strain increments which give a true indication of the rigidity. This behavior
becomes apparent on a plot of the analysis where the rigidity decreases from very high
values at a small ¢ to a linear curve at high ¢ (see Figure 7, above). A linear regression
through this ultimate portion of the incremental rigidity curve will yield slope and
offset values g and A:

(AE) = A(ge +h) (10)

incvemental

The incremental rigidity, by definition is also the slope (first derivative) of the
force-strain function (Eq. (5)):

(AE)incremental = dF/dg - A(zﬂg + b) (11)

Comparing Egs. (7), (8) and (11) it becomes apparent that the incremental rigidity
and secant rigidity analyses for the same load test will result in a different force-strain
relationship, by a factor of 2 in the first term (slope) and that the second term
constants (b and % respectively) are equivalent. This is illustrated in Figure 7 with a
sample data set from a series of top-down tests (the “Texas’ case history). Strain gage 1
is located just below the point of load application, and is analyzed using the secant
rigidity method. Strain gage 2 is located some distance down within the shear embed-
ment zone, and is analyzed using the incremental rigidity method. As expected from
theory, the two linear regressions converge at the vertical axis (the zero-strain condi-
tion) but have significantly different slopes. For comparison purposes, the ACI
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Figure 8.
Non-linear force-strain curve with incvemental (tangent) and secant moduli.

rigidity (computed using the empirical relationship to the square root of concrete
strength fc) is also plotted as a horizontal line, showing that it does not produce a good
result for this particular foundation element.

Because it is the slope from any point on the force-strain curve back to the origin,
the secant rigidity can be multiplied by any measured strain to directly compute force.
However, the incremental rigidity cannot be simply multiplied because it is by defi-
nition tangent to the force-strain curve at all points and does not intercept the origin.
Figure 8 illustrates this point graphically.

By simply multiplying the curve-fit incremental rigidity slope by 0.5, the equiva-
lent secant rigidity function is recovered and Eq. (12) used to compute the force
directly for each measured strain.

F, = A(O.S(gsﬁ) + hsn) = A(aeﬁ + bsn) (12)

Alternatively, or when dealing with highly non-linear rigidity relationships, the
value of F at any loading point » may be approximated by a recursive summation
formula [9]:

Fy=F, 1+ (AEn)incremenml (87l - gn—l) (13)

where F,_; and €, ; are the force and strain of the previous loading data point,
respectively. This step-wise approximation will roughly follow the curved load-strain
path.

This approach will give approximately correct results even if the rigidity function
is highly non-linear, such as in the case of a tensile load test once the cementitious
material begins to crack due to tensile strain, or in a compressive load test with
pre-existing tension cracks in the cementitious material which are closed up by the
compressive axial stress [9]. As noted above, foundation element axial rigidity AE is
composed of two contributors, steel and cementitious material (4,E; and A E,,
respectively). For a cementitious material which is fractured (due to shrinkage during
curing or applied tensile stress), the nominal area A, is replaced with an effective
area A’..

Figure 9 illustrates two idealized functions of nonlinear axial rigidity due to
cementitious material fracturing in response to tensile stress (bold line segments). The
full composite rigidity consists of A,E; + A E.. The angular pathways to/from the
reinforcing steel rigidity (A,E, only) indicate idealized changes in rigidity due to
fracturing with increasing strain. With increased compressive strain pre-existing
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Incremental load calculation.

fractures progressively close up, A’ increases from zero to A, and the rigidity
increases until the full composite rigidity is reached. Conversely, with increased
tensile strain, the rigidity decreases from the full composite value down to the
reinforcing steel rigidity only, as the cementitious material progressively fractures
until only the reinforcing steel remains to transmit stress.

If Eq. (13) is employed, using each load test increment as a discrete step the non-
linear load-strain curve can be approximated by a series of small incremental increases
in load, each of which is linear with its corresponding increase in strain, as illustrated
in Figure 10.

Note that all the rigidity back-calculation methods depend on obtaining high-
quality strain gage data from relatively small, equal load increments to clearly define
trends. Results obtained at one strain gage level may not apply at other levels, due to
several factors including possible changes cross-sectional area, reinforcement details,
confinement (within rock socket as opposed to overburden) and differing concrete
curing conditions (hydrostatic pressure, water table elevation, environmental
temperatures, etc.) among others.

Once the load at each strain gage level has been computed using the methods
discussed above at every load increment, a family of load distribution curves can be
generated (see Figure 11).

The difference between adjacent levels (a ‘zone’ of the foundation element),
divided by the perimeter shear area of the zone, gives the unit shear, the t’
component of the desired t-z curve. A level of strain gages placed near the base of the
foundation also allows for estimation of the bearing resistance g.
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Figure 11.
Sample load distribution (Texas case history).

Note that the analysis results presented herein are based on re-zeroing all strain
gages prior to the start of loading, and account for the resistance of the as-built
isolated test element to a relatively short-duration externally-applied load only. They
do not account for any residual load present in the element at the start of testing,
down-drag, long-term setup, creep or group effects.

4. Compression and displacement

To a first-order approximation, the displacement of each zone of an axially-loaded
deep foundation is the measurement D given by dial gages or displacement trans-
ducers at the head, or point of load application in bi-directional load tests. However, as
discussed above the foundation element has a rigidity, which means it will compress
or elongate elastically under applied stress. The degree of this compression or elonga-
tion can be estimated using the collected strain gage data.

For each zone, the zone strain is computed as the average of the measured strains
at the top and bottom of the zone. Change in length (compression or elongation) 6 is
then computed as the average zone strain times the zone length L.

Erop + Epottom
Ezone = # > 52:0118 = Ezone ° Lzone (14)

Zones which do not have strain gage levels both at the top and bottom, but rather
are located next to boundary changes (the zone(s) adjacent to the load-application
device and/or the top and bottom of the foundation element) must be evaluated
differently. Depending on the situation, the one available strain gage level may be
assumed to be representative of strain throughout the zone, strain data from two or
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Figure 12.
Calculation of average strain, compression and displacement at top, mid-point and bottom of a zone.

more levels may be extrapolated, or strain may be estimated by correlation to
extensometer telltale rod data.

The total displacement of each zone z; is then computed at the midpoint of the
zone. The calculation must include the displacement at the point of load application D
as well as the change in length of all zones between the point of load application and
the current zone:

1
z]-:D+Z(3i+§5j (15)

This calculation will then result in the ‘2z’ component of the t-z curve for every
shear zone. Figure 12 is a schematic of the zone displacement calculation.

In certain circumstances, the elastic compression of the test foundation may be a
minor contributor to the total computed displacement. However, in situations with
very stiff soils or rock, and/or with slender elements with a relatively small rigidity
and large strains, the elastic deformation can be a significant if not major portion of
the total displacement of each shear zone. While the interpretation of data described
in this section is simpler than in the previous sections, it is no less critical to
constructing the t-z and g-z curves from strain data correctly.

5. Conclusions

Strain gages are critically important instruments for monitoring the performance
of a deep foundation element undergoing a load test. Strain gage data must be prop-
erly analyzed in order to gain insight into the true soil-structure interaction. In order
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to verify design assumptions and particularly to optimize computer models, the unit
capacity curves (so-called t-z and g-z curves) must be obtained from the load test.
Properly analyzed strain gage data contributes to both components of these curves.
However, strain gages are not load cells — the conversion of strain to load is not as
straightforward as linear elastic theory may lead one to believe. Careful attention must
be given to the selection, placement, monitoring and interpretation of strain gages in
deep foundation load testing. The techniques described herein have been developed
and successfully deployed by the author and others for over two decades to utilize
strain gages in deep foundation load testing.
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